# Claude Code Skills 模块构建与AI编程辅助指南 ## Claude Code Skills 提示词模块化构建方法 **什么是Claude Code Skills?** Claude Code Skills(智能体技能)是由Anthropic推出的一种"**技能包**"机制,用于封装专业知识和工作流程,使大模型(如Claude)能够按需加载相应模块,完成特定领域的任务[\[1\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=%E4%BB%80%E4%B9%88%E6%98%AF%20Claude%20Skills%EF%BC%9F)[\[2\]](https://www.bilibili.com/opus/1132124852115734530#:~:text=Claude%20Skills%20%E6%9C%AC%E8%B4%A8%E4%B8%8A%E6%98%AF%E4%B8%80%E7%A7%8D,)。每个Skill本质上是一个**自包含的功能模块**,包含了**元数据、指令和资源**等要素。与传统一次性的大段 Prompt 不同,Skills采用**渐进式披露**架构,将上下文按需逐级加载,提高了上下文利用效率[\[3\]](https://claudecn.com/#:~:text=Agent%20Skills%20%E5%8F%AF%E5%A4%8D%E7%94%A8%E7%9A%84%E6%8A%80%E8%83%BD%E7%B3%BB%E7%BB%9F%EF%BC%8C%E8%AE%A9%20Claude%20%E6%8E%8C%E6%8F%A1%E7%89%B9%E5%AE%9A%E9%A2%86%E5%9F%9F%E4%B8%93%E4%B8%9A%E7%9F%A5%E8%AF%86%E3%80%82%E5%8C%85%E6%8B%AC,%E8%BF%9E%E6%8E%A5%E5%A4%96%E9%83%A8%E5%B7%A5%E5%85%B7%E5%92%8C%E6%95%B0%E6%8D%AE%E6%BA%90%EF%BC%8C%E6%89%A9%E5%B1%95%20Claude%20%E7%9A%84%E8%83%BD%E5%8A%9B%E8%BE%B9%E7%95%8C%EF%BC%8C%E6%9E%84%E5%BB%BA%E5%BC%BA%E5%A4%A7%E7%9A%84%20AI%20%E5%BA%94%E7%94%A8%E7%94%9F%E6%80%81%E3%80%82)[\[4\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=,3.2.2%20Markdown%20%E6%8C%87%E4%BB%A4%E6%AD%A3%E6%96%87)。换言之,我们可以把Claude Skills理解为AI工具箱中的插件,将反复使用的提示语和脚本封装成可复用模块,以便在需要时自动调用,从而避免每次手动重复提示[\[5\]](https://cloud.tencent.com/developer/article/2616585#:~:text=Claude%20Skills%E6%98%AFAnthropic%E6%8E%A8%E5%87%BA%E7%9A%84AI%E5%8A%9F%E8%83%BD%E9%9D%A9%E5%91%BD%EF%BC%8C%E5%8F%AF%E5%B0%86%E7%94%A8%E6%88%B7%E4%BD%BF%E7%94%A8AI%E7%9A%84%E4%B9%A0%E6%83%AF%E6%96%87%E4%BB%B6%E5%8C%96%E7%AE%A1%E7%90%86%E3%80%82%E5%AE%83%E8%83%BD%E8%A7%A3%E5%86%B3Claude%E5%81%A5%E5%BF%98%E3%80%81%E9%9C%80%E9%87%8D%E5%A4%8D%E6%8F%90%E7%A4%BA%E8%AF%8D%E7%9A%84%E9%97%AE%E9%A2%98%EF%BC%8C%E5%B0%86%E4%BB%BB%E5%8A%A1%E8%AF%B4%E6%98%8E%E3%80%81%E5%B7%A5%E5%85%B7%E4%BB%A3%E7%A0%81%E7%AD%89%E6%89%93%E5%8C%85%E6%88%90%20)[\[6\]](https://www.facebook.com/iamvista/photos/%E6%9F%90%E5%A4%A9%E6%B7%B1%E5%A4%9C%E6%88%91%E6%AD%A3%E5%9C%A8%E8%B6%95%E4%B8%80%E4%BB%BD%E6%96%87%E4%BB%B6%E5%A4%A9%E5%95%8A%E5%90%8C%E6%A8%A3%E7%9A%84%E6%9E%B6%E6%A7%8B%E5%90%8C%E6%A8%A3%E7%9A%84%E8%AA%9E%E6%B0%A3%E5%90%8C%E6%A8%A3%E7%9A%84%E6%A0%BC%E5%BC%8F%E8%A6%81%E6%B1%82%E4%BD%86%E6%88%91%E5%8F%88%E5%BE%97%E9%87%8D%E6%96%B0%E6%89%93%E4%B8%80%E6%AC%A1%E8%AB%8B%E7%94%A8%E9%80%99%E5%80%8B%E6%A0%BC%E5%BC%8F%E8%AB%8B%E5%85%88%E5%95%8F%E4%B8%89%E5%80%8B%E6%BE%84%E6%B8%85%E5%95%8F%E9%A1%8C%E8%AB%8B%E6%8A%8A%E8%BC%B8%E5%87%BA%E5%88%86%E6%88%90%E5%9B%9B%E6%AE%B5%E8%AB%8B%E9%99%84%E4%B8%8A%E5%8F%AF%E7%9B%B4%E6%8E%A5%E8%B2%BC%E5%88%B0-notion-%E7%9A%84/10162293093624053/#:~:text=,%E6%88%91%E6%80%8E%E9%BA%BC%E5%81%9A%E4%B8%80%E5%80%8B%E5%A5%BDskill%EF%BC%8C%E8%AE%8A%E6%88%90skill)。 **技能文件结构:** 每个Skill通常以独立文件夹形式存在,并包含一个核心定义文件(例如SKILL.md)以及可选的示例、模板和脚本子目录[\[7\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=%E6%8A%80%E8%83%BD%E7%BB%93%E6%9E%84%EF%BC%9A)。其基本结构如下(以my-skill为例)[\[8\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=my,%E8%BE%85%E5%8A%A9%E8%84%9A%E6%9C%AC%EF%BC%88%E5%8F%AF%E9%80%89%EF%BC%89): my-skill/ ├── SKILL.md # 技能定义(必需,含YAML元数据和Markdown内容) ├── examples/ # 示例文件(可选) ├── templates/ # 模板文件(可选) └── scripts/ # 辅助脚本(可选) 在SKILL.md中,开头使用YAML格式的**前置元数据(Skill Manifest)**描述技能信息,接着是Markdown格式的技能内容[\[9\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=%E6%8A%80%E8%83%BD%E5%AE%9A%E4%B9%89%E6%A0%BC%E5%BC%8F)。例如: \--- name: my-skill-name description: 用一句话清晰描述此技能的功能和适用场景 version: 1.0.0 author: 张三 tags: \[类别1, 类别2\] \--- \# 我的技能名称
\## 目的 这里解释该技能要解决的问题、使用场景。
\## 指令 这里编写赋予AI的详细指令,指导其执行本技能涉及的任务步骤。
\## 示例 \### 示例 1:基本用法 输入:... 输出:...
\### 示例 2:进阶用法 输入:... 输出:...
\## 指南 \- 提示使用者的一些注意事项或最佳实践要点。
\## 限制 \- 列出本技能的已知局限,如不会处理某些特殊情况等。 上述示例展示了技能定义模板的关键部分[\[10\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=,%E7%B1%BB%E5%88%AB2)[\[11\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=):YAML区块定义技能名称、描述、版本、作者和标签等元数据;随后Markdown正文按章节提供了技能的**用途说明**、AI执行的**详细指令**、使用**示例**以及指导和限制。元数据使技能模块**可版本化**和**可审计**,而指令部分则充当AI执行该技能的"剧本"。此外,开发者可以在scripts/目录中加入辅助脚本(如Python脚本)或在templates/加入模板文件,供AI在执行技能时调用[\[12\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=Anthropic%20Claude%20Skills%20%E6%98%AF%E5%8C%85%E5%90%AB%E6%8C%87%E4%BB%A4%E3%80%81%E8%84%9A%E6%9C%AC%E5%92%8C%E8%B5%84%E6%BA%90%E7%9A%84%E6%96%87%E4%BB%B6%E5%A4%B9%EF%BC%8CClaude%20%E5%8A%A8%E6%80%81%E5%8A%A0%E8%BD%BD%E4%BB%A5%E6%8F%90%E9%AB%98%E4%B8%93%E4%B8%9A%E4%BB%BB%E5%8A%A1%E7%9A%84%E6%80%A7%E8%83%BD%E3%80%82)[\[13\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=)。这种结构使得每个Skill成为**可组合、可共享**的最小单元,方便团队协作和知识复用[\[14\]](https://github.com/wensia/xiaohongshu-poster-generator#:~:text=wensia%2Fxiaohongshu,Code%20%2B%20MCP%20%E7%9A%84%E5%B0%8F%E7%BA%A2%E4%B9%A6%E6%98%9F%E5%BA%A7%E5%86%85%E5%AE%B9%E8%87%AA%E5%8A%A8%E5%8C%96%E5%B7%A5%E4%BD%9C%E6%B5%81%EF%BC%8C%E6%94%AF%E6%8C%81%E6%B5%B7%E6%8A%A5%E7%94%9F%E6%88%90%E3%80%81%E7%88%86%E6%96%87%E5%88%86%E6%9E%90%E3%80%81%E5%86%85%E5%AE%B9%E5%8F%91%E5%B8%83%E7%AD%89%E5%8A%9F%E8%83%BD%E3%80%82%20%E5%8A%9F%E8%83%BD%E7%89%B9%E6%80%A7)。 **构建Skills的步骤(从入门到精通):** 对于初学者,推荐循序渐进掌握Claude Skills的制作与应用,可参考以下三步策略[\[15\]](https://blog.csdn.net/yangshangwei/article/details/156836796#:~:text=%E4%B8%80%E4%B8%AA%E5%8F%AF%E8%90%BD%E5%9C%B0%E7%9A%84%E4%B8%89%E6%AD%A5%E6%B3%95,3%20%E7%AC%AC%E4%B8%89%E6%AD%A5%EF%BC%9A%E6%8A%8AClaude%20%E5%BD%93%E2%80%9C%E6%90%AD%E5%AD%90%E2%80%9D%EF%BC%8C%E8%80%8C%E4%B8%8D%E6%98%AF%E6%90%9C%E7%B4%A2%E6%A1%86): - **直接复用现有技能:** **"拿来即用"**是上手Claude Skills最快的方法[\[15\]](https://blog.csdn.net/yangshangwei/article/details/156836796#:~:text=%E4%B8%80%E4%B8%AA%E5%8F%AF%E8%90%BD%E5%9C%B0%E7%9A%84%E4%B8%89%E6%AD%A5%E6%B3%95,3%20%E7%AC%AC%E4%B8%89%E6%AD%A5%EF%BC%9A%E6%8A%8AClaude%20%E5%BD%93%E2%80%9C%E6%90%AD%E5%AD%90%E2%80%9D%EF%BC%8C%E8%80%8C%E4%B8%8D%E6%98%AF%E6%90%9C%E7%B4%A2%E6%A1%86)。Anthropic官方提供了丰富的内置技能库(涵盖文档处理、代码开发、创意生成等),社区也涌现出大量共享技能包。初始阶段,先尝试调用这些**官方和社区现成Skills**来完成任务。例如使用/skill.docx快速生成Word报告,或/skill.xlsx分析Excel数据等[\[16\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=,%E9%A2%84%E7%AE%97%E6%98%8E%E7%BB%86%20%E5%90%AF%E7%94%A8%E4%BF%AE%E8%AE%A2%E8%B7%9F%E8%B8%AA%E4%BB%A5%E4%BE%9B%E5%AE%A1%E6%9F%A5)[\[17\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=)。通过观察这些技能的效果和实现方式,来体会技能的结构和用途。 - **将重复任务技能化:** 当发现某类任务需要频繁向AI重复说明时,就可以考虑将其封装为自定义Skill[\[15\]](https://blog.csdn.net/yangshangwei/article/details/156836796#:~:text=%E4%B8%80%E4%B8%AA%E5%8F%AF%E8%90%BD%E5%9C%B0%E7%9A%84%E4%B8%89%E6%AD%A5%E6%B3%95,3%20%E7%AC%AC%E4%B8%89%E6%AD%A5%EF%BC%9A%E6%8A%8AClaude%20%E5%BD%93%E2%80%9C%E6%90%AD%E5%AD%90%E2%80%9D%EF%BC%8C%E8%80%8C%E4%B8%8D%E6%98%AF%E6%90%9C%E7%B4%A2%E6%A1%86)。经验法则是:**凡是你在对话中重复3次以上的提示**,都值得沉淀为技能模块。首先,整理该任务的明确步骤和专业知识要点,把你的**方法论**写下来[\[6\]](https://www.facebook.com/iamvista/photos/%E6%9F%90%E5%A4%A9%E6%B7%B1%E5%A4%9C%E6%88%91%E6%AD%A3%E5%9C%A8%E8%B6%95%E4%B8%80%E4%BB%BD%E6%96%87%E4%BB%B6%E5%A4%A9%E5%95%8A%E5%90%8C%E6%A8%A3%E7%9A%84%E6%9E%B6%E6%A7%8B%E5%90%8C%E6%A8%A3%E7%9A%84%E8%AA%9E%E6%B0%A3%E5%90%8C%E6%A8%A3%E7%9A%84%E6%A0%BC%E5%BC%8F%E8%A6%81%E6%B1%82%E4%BD%86%E6%88%91%E5%8F%88%E5%BE%97%E9%87%8D%E6%96%B0%E6%89%93%E4%B8%80%E6%AC%A1%E8%AB%8B%E7%94%A8%E9%80%99%E5%80%8B%E6%A0%BC%E5%BC%8F%E8%AB%8B%E5%85%88%E5%95%8F%E4%B8%89%E5%80%8B%E6%BE%84%E6%B8%85%E5%95%8F%E9%A1%8C%E8%AB%8B%E6%8A%8A%E8%BC%B8%E5%87%BA%E5%88%86%E6%88%90%E5%9B%9B%E6%AE%B5%E8%AB%8B%E9%99%84%E4%B8%8A%E5%8F%AF%E7%9B%B4%E6%8E%A5%E8%B2%BC%E5%88%B0-notion-%E7%9A%84/10162293093624053/#:~:text=,%E6%88%91%E6%80%8E%E9%BA%BC%E5%81%9A%E4%B8%80%E5%80%8B%E5%A5%BDskill%EF%BC%8C%E8%AE%8A%E6%88%90skill)。然后,利用Claude Code内置的**Skill Creator**功能,让AI协助你生成技能骨架[\[18\]](https://hbwdj.gov.cn/appbdetail-imqqsmrp9897358.d#:~:text=%E9%AA%97%E4%BD%A0%E7%9A%84%EF%BC%8C%E5%85%B6%E5%AE%9EAI%E6%A0%B9%E6%9C%AC%E4%B8%8D%E9%9C%80%E8%A6%81%E9%82%A3%E4%B9%88%E5%A4%9A%E6%8F%90%E7%A4%BA%E8%AF%8D%E3%80%82%20%E4%BD%A0%E5%8F%AA%E9%9C%80%E8%A6%81%E8%B0%83%E7%94%A8AI%20%E6%9C%AC%E8%BA%AB%E7%9A%84%E2%80%9CSkill%20Creator%E2%80%9D%E6%8A%80%E8%83%BD%EF%BC%8C%E7%94%A8%E4%BD%A0%E7%9A%84%E8%AF%AD%E8%A8%80%E6%8F%8F%E8%BF%B0%E8%87%AA%E5%B7%B1%E7%9A%84%E9%9C%80%E6%B1%82%EF%BC%8C%E8%AE%A9AI%E8%87%AA%E5%8A%A8%E5%B8%AE%E4%BD%A0%E7%94%9F%E6%88%90%E4%B8%80%E9%97%A8%E6%8A%80%E8%83%BD%EF%BC%8C%E4%BD%BF%E7%94%A8%E8%B5%B7%E6%9D%A5%E9%9D%9E%E5%B8%B8%E5%8F%8B%E5%A5%BD%EF%BC%8CAI%E4%BC%9A%E4%B8%80%E6%AD%A5%E6%AD%A5%E5%BC%95%E5%AF%BC%E4%BD%A0%E8%AF%B4%E5%87%BA%E4%BD%A0%E7%9A%84%E9%9C%80%E6%B1%82%EF%BC%8C%E4%BD%A0%E5%8F%AA%20)。例如,你可以对Claude说:"帮我创建一个Skill,用于根据文章内容自动选择并插入配图"。Claude会逐步引导你提供细节,自动产出包含正确YAML元数据和指令内容的Skill文件[\[18\]](https://hbwdj.gov.cn/appbdetail-imqqsmrp9897358.d#:~:text=%E9%AA%97%E4%BD%A0%E7%9A%84%EF%BC%8C%E5%85%B6%E5%AE%9EAI%E6%A0%B9%E6%9C%AC%E4%B8%8D%E9%9C%80%E8%A6%81%E9%82%A3%E4%B9%88%E5%A4%9A%E6%8F%90%E7%A4%BA%E8%AF%8D%E3%80%82%20%E4%BD%A0%E5%8F%AA%E9%9C%80%E8%A6%81%E8%B0%83%E7%94%A8AI%20%E6%9C%AC%E8%BA%AB%E7%9A%84%E2%80%9CSkill%20Creator%E2%80%9D%E6%8A%80%E8%83%BD%EF%BC%8C%E7%94%A8%E4%BD%A0%E7%9A%84%E8%AF%AD%E8%A8%80%E6%8F%8F%E8%BF%B0%E8%87%AA%E5%B7%B1%E7%9A%84%E9%9C%80%E6%B1%82%EF%BC%8C%E8%AE%A9AI%E8%87%AA%E5%8A%A8%E5%B8%AE%E4%BD%A0%E7%94%9F%E6%88%90%E4%B8%80%E9%97%A8%E6%8A%80%E8%83%BD%EF%BC%8C%E4%BD%BF%E7%94%A8%E8%B5%B7%E6%9D%A5%E9%9D%9E%E5%B8%B8%E5%8F%8B%E5%A5%BD%EF%BC%8CAI%E4%BC%9A%E4%B8%80%E6%AD%A5%E6%AD%A5%E5%BC%95%E5%AF%BC%E4%BD%A0%E8%AF%B4%E5%87%BA%E4%BD%A0%E7%9A%84%E9%9C%80%E6%B1%82%EF%BC%8C%E4%BD%A0%E5%8F%AA%20)。接着你可以在此基础上完善调整,加入脚本或模板,实现更复杂的逻辑。通过这种**人机协作**,即使不熟悉YAML语法的新手也能快速构建出可用的技能雏形。 - **测试迭代与高级优化:** 创建Skill后,在实际项目中多次调用测试,验证其稳定性和效果。根据AI每次执行技能的表现,不断**迭代优化**指令和脚本:完善边缘情况处理,增加更多示例和指南,让AI对技能意图理解更准确。Anthropic提供了**渐进式构建**技能的最佳实践,例如"MASTER六步法"等框架,用于从手工Prompt打磨到自动技能的完整流程[\[19\]](https://lilys.ai/zh/notes/claude-code-20251031/claude-code-skills-automate-everything#:~:text=%E6%83%B3%20%E8%87%AA%E5%8A%A8%E5%8C%96%E4%BD%A0%E6%89%80%E5%81%9A%E7%9A%84%E4%B8%80%E5%88%87%20%E5%90%97%EF%BC%9F%E5%AD%A6%E4%B9%A0%E5%A6%82%E4%BD%95%E5%88%A9%E7%94%A8%20%E5%85%8B%E5%8A%B3%E5%BE%B7%C2%B7%E7%A7%91%E5%BE%B7%E6%8A%80%E8%83%BD%20%E5%88%9B%E5%BB%BA%E8%87%AA%E5%AE%9A%E4%B9%89%E5%B7%A5%E4%BD%9C%E6%B5%81%E3%80%82%E6%9C%AC%E5%86%85%E5%AE%B9%E6%8F%AD%E7%A4%BA%E4%BA%86,%E5%85%AD%E6%AD%A5MASTER%E6%A1%86%E6%9E%B6%EF%BC%8C%E6%95%99%E4%BD%A0%E5%A6%82%E4%BD%95%E9%80%9A%E8%BF%87%20%E8%BF%AD%E4%BB%A3%E5%8F%8D%E9%A6%88%20%E8%AE%AD%E7%BB%83AI%E3%80%82%E6%8E%8C%E6%8F%A1%E6%AD%A4%E6%96%B9%E6%B3%95%EF%BC%8C%E4%BD%A0%E5%B0%B1%E8%83%BD%E5%B0%86%E9%87%8D%E5%A4%8D%E4%BB%BB%E5%8A%A1%E8%BD%AC%E5%8C%96%E4%B8%BA%E9%AB%98%E6%95%88%E7%9A%84%20%E7%B3%BB%E7%BB%9F%E5%8C%96%E6%8A%80%E8%83%BD%EF%BC%8C%E5%AE%9E%E7%8E%B0%E5%B7%A5%E4%BD%9C%E6%95%88%E7%8E%87%E7%9A%84%E6%8C%87%E6%95%B0%E7%BA%A7%E6%8F%90%E5%8D%87%E3%80%82)[\[20\]](https://lilys.ai/zh/notes/claude-code-20251031/claude-code-skills-automate-everything#:~:text=4.%20MASTER%E6%A1%86%E6%9E%B6%EF%BC%9A%E7%AC%AC%E4%BA%8C%E9%98%B6%E6%AE%B5%E2%80%94%E2%80%94%E7%B3%BB%E7%BB%9F%E5%8C%96%E4%B8%BA%E6%8A%80%E8%83%BD%20)。核心思想是在对话中**演示和纠正**AI完成任务的全过程,然后一句话让Claude将过程固化为新技能[\[20\]](https://lilys.ai/zh/notes/claude-code-20251031/claude-code-skills-automate-everything#:~:text=4.%20MASTER%E6%A1%86%E6%9E%B6%EF%BC%9A%E7%AC%AC%E4%BA%8C%E9%98%B6%E6%AE%B5%E2%80%94%E2%80%94%E7%B3%BB%E7%BB%9F%E5%8C%96%E4%B8%BA%E6%8A%80%E8%83%BD%20)[\[21\]](https://lilys.ai/zh/notes/claude-code-20251031/claude-code-skills-automate-everything#:~:text=1.%20%E7%B3%BB%E7%BB%9F%E5%8C%96%E7%9B%AE%E6%A0%87%EF%BC%9A%E5%B0%86%E5%AD%A6%E5%88%B0%E7%9A%84%E6%89%80%E6%9C%89%E5%85%B3%E9%94%AE%E7%BB%8F%E9%AA%8C%E6%95%99%E8%AE%AD%E8%BD%AC%E5%8C%96%E4%B8%BA%20%E7%B3%BB%E7%BB%9F%E5%8C%96%E6%8A%80%E8%83%BD%E3%80%82,48)。之后再让Claude应用该技能执行类似任务,观察输出并调整技能定义[\[22\]](https://lilys.ai/zh/notes/claude-code-20251031/claude-code-skills-automate-everything#:~:text=match%20at%20L3327%205,57)。这种循环可以逐步提升技能质量,直到达到"专家级"水平。在进阶阶段,你还可以尝试**组合多个Skills**协同工作,以及利用Claude Code提供的Hooks和子代理机制扩展技能的功能边界,实现更复杂的自动化开发流程。 通过以上步骤,从模仿官方示例到定制自己的技能,再到深入技能架构的优化,你将完成从入门到精通Claude Code Skills的蜕变。在这一过程中,要牢记技能开发的目的:**减少重复劳动、固化专业知识,并让AI行为更可控**。下一节我们将进一步探讨这一新范式如何将开发流程从传统Prompt工程升级为模块化的自动化开发。 ## 从Prompt工程到可复用模块:范式转移 Claude Skills的出现标志着AI应用开发从"Prompt Engineering"(提示词工程)向"**Context Engineering**"(上下文工程)的范式转移[\[23\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=1)。传统的Prompt工程往往依赖人工反复调试长提示语,把所有指导都硬编码在一个巨大prompt里,不仅上下文窗口占用大,而且难以复用和维护。相反,Skills将复杂提示拆解为**可版本化、可审计、可组合**的**运行时模块**[\[24\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=%E4%B8%BA%E4%BA%86%E9%81%BF%E5%85%8D%E2%80%9C%E4%BB%8B%E7%BB%8D%E5%8A%9F%E8%83%BD%E4%BD%86%E7%BC%BA%E5%B0%91%E5%8F%AF%E6%A3%80%E9%AA%8C%E7%BB%93%E8%AE%BA%E2%80%9D%EF%BC%8C%E6%9C%AC%E6%96%87%E5%85%88%E6%8A%8A%20Skills%20%E7%9A%84%E6%9E%B6%E6%9E%84%E4%BB%B7%E5%80%BC%E6%94%B6%E6%95%9B%E6%88%90%E4%B8%80%E5%8F%A5%E5%8F%AF%E9%AA%8C%E8%AF%81%E7%9A%84%E5%91%BD%E9%A2%98%EF%BC%9A)。这一转变带来了三大核心收益[\[25\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=Skills%20%E6%8A%8A%20LLM%20%E7%B3%BB%E7%BB%9F%E4%BB%8E%E2%80%9C%E6%96%87%E6%9C%AC%E5%A0%86%E5%8F%A0%E7%9A%84%E5%8D%95%E4%BD%93%E6%8F%90%E7%A4%BA%E8%AF%8D%E2%80%9D%EF%BC%8C%E9%87%8D%E6%9E%84%E4%B8%BA%E2%80%9C%E5%8F%AF%E7%89%88%E6%9C%AC%E5%8C%96%E3%80%81%E5%8F%AF%E5%AE%A1%E8%AE%A1%E3%80%81%E5%8F%AF%E7%BB%84%E5%90%88%E7%9A%84%E8%BF%90%E8%A1%8C%E6%97%B6%E6%A8%A1%E5%9D%97%E2%80%9D%EF%BC%9B%E6%A0%B8%E5%BF%83%E6%94%B6%E7%9B%8A%E6%9D%A5%E8%87%AA%E4%B8%89%E4%BB%B6%E4%BA%8B%EF%BC%9A%E4%B8%8A%E4%B8%8B%E6%96%87%E9%A2%84%E7%AE%97%E5%8F%AF%E6%8E%A7%E3%80%81%E6%89%A7%E8%A1%8C%E8%B7%AF%E5%BE%84%E5%8F%AF%E6%8E%A7%E3%80%81%E6%9D%83%E9%99%90%E8%BE%B9%E7%95%8C%E5%8F%AF%E6%8E%A7%E3%80%82): - **上下文预算可控:** Skills采用**分层渐进披露**机制,将提示内容分为元数据、指令、资源三层,按需加载[\[26\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=,3.%20%E6%8A%80%E6%9C%AF%E8%A7%A3%E6%9E%84%EF%BC%9ASkill%20%E7%9A%84%E7%89%A9%E7%90%86%E5%BD%A2%E6%80%81%E4%B8%8E%E8%A7%84%E8%8C%83)。模型初始只载入轻量的元信息(如技能名称和描述),在确认相关任务时再注入具体指令,必要时最后才加载代码模板或数据资源[\[3\]](https://claudecn.com/#:~:text=Agent%20Skills%20%E5%8F%AF%E5%A4%8D%E7%94%A8%E7%9A%84%E6%8A%80%E8%83%BD%E7%B3%BB%E7%BB%9F%EF%BC%8C%E8%AE%A9%20Claude%20%E6%8E%8C%E6%8F%A1%E7%89%B9%E5%AE%9A%E9%A2%86%E5%9F%9F%E4%B8%93%E4%B8%9A%E7%9F%A5%E8%AF%86%E3%80%82%E5%8C%85%E6%8B%AC,%E8%BF%9E%E6%8E%A5%E5%A4%96%E9%83%A8%E5%B7%A5%E5%85%B7%E5%92%8C%E6%95%B0%E6%8D%AE%E6%BA%90%EF%BC%8C%E6%89%A9%E5%B1%95%20Claude%20%E7%9A%84%E8%83%BD%E5%8A%9B%E8%BE%B9%E7%95%8C%EF%BC%8C%E6%9E%84%E5%BB%BA%E5%BC%BA%E5%A4%A7%E7%9A%84%20AI%20%E5%BA%94%E7%94%A8%E7%94%9F%E6%80%81%E3%80%82)。这样避免了"一次性把所有提示堆入上下文"的低效做法,防止上下文窗口的"公地悲剧"[\[27\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=,2.3%20%E6%8A%8A%E2%80%9C%E5%88%86%E5%B1%82%E6%8A%AB%E9%9C%B2%E2%80%9D%E6%8F%90%E5%8D%87%E4%B8%BA%E8%BF%90%E8%A1%8C%E6%97%B6%E7%8A%B6%E6%80%81%E6%9C%BA)。通过精细控制常驻、激活、执行三类上下文开销,开发者可以**显著降低Token占用**,将有限的上下文预算用在刀刃上。 - **执行路径可控:** 在Skills架构下,模型不再承担所有推理细节,而更像一个**编排者**。我们可以把复杂决策逻辑迁移到Skill的脚本中,由可测试的代码或明确的规则去执行,Claude则根据指令**调度脚本和资源**[\[28\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=,%E6%9D%83%E9%99%90%E8%BE%B9%E7%95%8C%E5%8F%AF%E6%8E%A7%EF%BC%9A%E7%94%A8%E6%B2%99%E7%AE%B1%E3%80%81%E7%BD%91%E7%BB%9C%E4%BB%A3%E7%90%86%E4%B8%8E%E6%9D%83%E9%99%90%E6%8F%90%E7%A4%BA%EF%BC%8C%E6%8A%8A%E5%B7%A5%E5%85%B7%E6%89%A7%E8%A1%8C%E9%9D%A2%E6%94%B6%E6%95%9B%E5%88%B0%E5%8F%AF%E5%AE%A1%E8%AE%A1%E3%80%81%E5%8F%AF%E6%B2%BB%E7%90%86%E7%9A%84%E8%BE%B9%E7%95%8C%E5%86%85%E3%80%82)。通过这种软硬结合,AI生成过程更具确定性,可重复性更高。例如一个技能可以包含预定义的正则脚本来处理文本格式,模型只需调用而非每次重新"即兴发挥"。这让AI行为如同运行程序模块一样**可预测、可验证**。 - **权限边界可控:** Skills配合Claude Code提供的沙箱和权限机制,可将AI的操作限制在安全边界内[\[28\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=,%E6%9D%83%E9%99%90%E8%BE%B9%E7%95%8C%E5%8F%AF%E6%8E%A7%EF%BC%9A%E7%94%A8%E6%B2%99%E7%AE%B1%E3%80%81%E7%BD%91%E7%BB%9C%E4%BB%A3%E7%90%86%E4%B8%8E%E6%9D%83%E9%99%90%E6%8F%90%E7%A4%BA%EF%BC%8C%E6%8A%8A%E5%B7%A5%E5%85%B7%E6%89%A7%E8%A1%8C%E9%9D%A2%E6%94%B6%E6%95%9B%E5%88%B0%E5%8F%AF%E5%AE%A1%E8%AE%A1%E3%80%81%E5%8F%AF%E6%B2%BB%E7%90%86%E7%9A%84%E8%BE%B9%E7%95%8C%E5%86%85%E3%80%82)。例如,在技能元数据或Claude配置中声明此技能允许的文件读写范围、外部命令白名单等,Claude执行技能时就不会越权[\[28\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=,%E6%9D%83%E9%99%90%E8%BE%B9%E7%95%8C%E5%8F%AF%E6%8E%A7%EF%BC%9A%E7%94%A8%E6%B2%99%E7%AE%B1%E3%80%81%E7%BD%91%E7%BB%9C%E4%BB%A3%E7%90%86%E4%B8%8E%E6%9D%83%E9%99%90%E6%8F%90%E7%A4%BA%EF%BC%8C%E6%8A%8A%E5%B7%A5%E5%85%B7%E6%89%A7%E8%A1%8C%E9%9D%A2%E6%94%B6%E6%95%9B%E5%88%B0%E5%8F%AF%E5%AE%A1%E8%AE%A1%E3%80%81%E5%8F%AF%E6%B2%BB%E7%90%86%E7%9A%84%E8%BE%B9%E7%95%8C%E5%86%85%E3%80%82)。通过引入**工具使用权限提示**以及隔离执行环境(如MCP服务器、虚拟机沙箱),开发者可以防范AI执行系统命令或访问敏感数据时可能带来的风险[\[29\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=%2A%204.1%20%E7%9B%91%E7%9D%A3%E8%80%85,6.2%20%E5%8D%8F%E5%90%8C%E6%9E%B6%E6%9E%84%EF%BC%9ASkill%20%E4%BD%9C%E4%B8%BA%E7%BC%96%E6%8E%92%E8%80%85)。相比任由AI自由解释模糊指令,这种方式下每个技能的**作用域和副作用都是受控**的,大幅提高了AI应用的安全性和可靠性。 综上所述,模块化的Skills架构将LLM从以前的"提示词拼凑的巨石"解耦为若干**可管理的小单元**[\[24\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=%E4%B8%BA%E4%BA%86%E9%81%BF%E5%85%8D%E2%80%9C%E4%BB%8B%E7%BB%8D%E5%8A%9F%E8%83%BD%E4%BD%86%E7%BC%BA%E5%B0%91%E5%8F%AF%E6%A3%80%E9%AA%8C%E7%BB%93%E8%AE%BA%E2%80%9D%EF%BC%8C%E6%9C%AC%E6%96%87%E5%85%88%E6%8A%8A%20Skills%20%E7%9A%84%E6%9E%B6%E6%9E%84%E4%BB%B7%E5%80%BC%E6%94%B6%E6%95%9B%E6%88%90%E4%B8%80%E5%8F%A5%E5%8F%AF%E9%AA%8C%E8%AF%81%E7%9A%84%E5%91%BD%E9%A2%98%EF%BC%9A)。开发者能够像搭建乐高一样组装技能,复用成熟模块,版本迭代升级技能库,并针对不同任务**按需加载**合适的技能组合[\[30\]](https://www.bilibili.com/opus/1132124852115734530#:~:text=Claude%20Skills%20%E5%AE%9E%E6%88%98%E6%8C%87%E5%8D%97%EF%BC%9A3%20%E5%88%86%E9%92%9F%E6%90%9E%E5%AE%9APPT%E3%80%81%E6%B5%B7%E6%8A%A5%E4%B8%8ELogo%20,%E5%AE%83%E5%B0%86%E5%B8%B8%E8%A7%81%E7%9A%84%E5%8A%9E%E5%85%AC%E4%BB%BB%E5%8A%A1%28%E5%A6%82Excel%20%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90%E3%80%81PPT%20%E6%BC%94%E7%A4%BA%E7%94%9F%E6%88%90%E3%80%81%E6%96%87%E6%A1%A3%E5%A4%84%E7%90%86%E3%80%81%E5%93%81%E7%89%8C%E8%AE%BE%E8%AE%A1%E7%AD%89%29%E5%B0%81%E8%A3%85%E6%88%90%E5%8F%AF%E5%A4%8D%E7%94%A8%E7%9A%84%E6%8A%80%E8%83%BD%E6%A8%A1%E5%9D%97%E3%80%82%E8%BF%99%E7%A7%8D%E8%AE%BE%E8%AE%A1%E7%90%86%E5%BF%B5%E7%9A%84%E6%A0%B8%E5%BF%83%E4%BC%98%E5%8A%BF)[\[31\]](https://lilys.ai/zh/notes/claude-skills-20251022/no-code-ai-workflow-claude-skills#:~:text=Skill%20%E5%9F%BA%E7%A1%80%E7%BB%93%E6%9E%84%EF%BC%9A%E6%9C%80%E7%AE%80%E5%8D%95%E6%83%85%E5%86%B5%E4%B8%8B%EF%BC%8CSkill%20%E6%98%AF%E4%B8%80%E4%B8%AA%E5%8C%85%E5%90%ABSkill%20Markdown%20%E6%96%87%E4%BB%B6%E7%9A%84%E7%9B%AE%E5%BD%95,36%5D)。这不仅提高了开发效率,也让AI行为更加透明可控--我们可以审查每个Skill的定义,像审计代码一样检查AI决策依据。这种以**技能库**为中心的上下文工程理念,正在帮助AI从通用助手进化为各行业的专家[\[32\]](https://github.com/0xfnzero/AI-Code-Tutorials#:~:text=%E4%BB%8E%E9%9B%B6%E5%9F%BA%E7%A1%80%E5%88%B0%E9%AB%98%E7%BA%A7%E5%BA%94%E7%94%A8%EF%BC%8C%E7%B3%BB%E7%BB%9F%E5%AD%A6%E4%B9%A0Claude%20Code%EF%BC%8C%E6%8E%8C%E6%8F%A1AI%20%E8%BE%85%E5%8A%A9%E7%BC%96%E7%A8%8B%E6%8A%80%E8%83%BD%EF%BC%8C%E6%8F%90%E5%8D%87%E5%BC%80%E5%8F%91%E6%95%88%E7%8E%8710%20%E5%80%8D%20,md%E3%80%81%E5%B7%A5%E5%85%B7%E6%9D%83%E9%99%90%E3%80%81gh%20CLI%EF%BC%89%3B%20%E7%BB%99Claude%20%E6%9B%B4%E5%A4%9A%E5%B7%A5%E5%85%B7%EF%BC%88bash%E3%80%81MCP)。许多团队已开始构建自己的私有Skills库,将领域知识固化为技能手册,与团队共享使用[\[31\]](https://lilys.ai/zh/notes/claude-skills-20251022/no-code-ai-workflow-claude-skills#:~:text=Skill%20%E5%9F%BA%E7%A1%80%E7%BB%93%E6%9E%84%EF%BC%9A%E6%9C%80%E7%AE%80%E5%8D%95%E6%83%85%E5%86%B5%E4%B8%8B%EF%BC%8CSkill%20%E6%98%AF%E4%B8%80%E4%B8%AA%E5%8C%85%E5%90%ABSkill%20Markdown%20%E6%96%87%E4%BB%B6%E7%9A%84%E7%9B%AE%E5%BD%95,36%5D)。Prompt工程不再是黑箱中的玄学调参,而变成了**软件工程化**的过程:定义规范→编码技能→测试迭代→部署上线。可以预见,随着技能生态的完善和技能市场的兴起[\[33\]](https://news.qq.com/rain/a/20260107A02N2N00#:~:text=Skills%20%E5%B0%B1%E6%98%AF%E7%BB%99Claude%20%E7%9A%84),未来"会写Prompt"将不再是关键竞争力,取而代之的是"**会设计AI技能模块**",让AI真正成为持续进化的数字员工。 ## Claude/GPT-4 助力 Golang + Vue3 全栈项目开发 大型语言模型(LLM)如Claude 2和GPT-4已成为开发者强有力的**编程助手**。下面我们以Golang后端 + Vue3 (TypeScript + Vuetify UI) 前端的全栈项目为例,探讨如何利用Claude/GPT-4提高各环节开发效率,并重点说明**系统构建方法、提示词模板设计**及**工作流程集成**。 ### 系统构建与架构规划 在项目初期,AI可以充当"**架构顾问**"的角色,帮助选择技术栈、搭建骨架。开发者可以用自然语言向Claude/GPT-4描述项目需求和约束,让其建议合适的框架和方案。例如:"我想用Go开发后端REST API,用哪种Web框架比较合适?"Claude基于知识建议使用Gin框架,并解释其上手简单、配置少的优点[\[34\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L93%20,side%20rendering%20and)。同样,对于前端,它可能推荐Vue3 + TypeScript配合Vuetify组件库,以快速构建响应式UI[\[35\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L96%20,No%20magic%2C%20no)[\[36\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=,No%20magic%2C%20no)。在实际案例中,开发者Korbinian Schleifer分享道:他询问Claude选择Go框架,Claude推荐了Gin,使他很快建立起第一个路由;选择前端则采用Vue3 + TS,Claude也支持这一选择,认为Vue的模板语法更贴近HTML,学习曲线相对平缓[\[34\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L93%20,side%20rendering%20and)[\[37\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=,No%20magic%2C%20no)。借助AI的建议,可以较快确定技术栈并初始化项目结构(例如生成基础的Go项目模块和Vue前端脚手架)。 **分层实现:** 拆解全栈系统时,建议先让AI协助规划前后端接口契约和模块划分。例如,可以让Claude梳理"后台需要提供哪些REST API,以及前端各页面对应哪些组件和状态管理"。通过逐步追问,Claude能够产出一个简单的**架构清单或示意图**。有趣的是,Claude擅长**文字描述架构**,甚至可以生成架构图的代码(如Excalidraw的JSON)供开发者直接渲染出图表[\[38\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=Claude%20can%20describe%20architecture%20well%2C,com%20which%20I%20then)。这有助于开发者和AI达成对系统设计的一致理解。 ### 提示词设计与编程对话技巧 在与AI pair programming(结对编程)的过程中,**提示词的设计**直接影响AI产出的质量和可控性。以下是实战中总结的Prompt技巧: - **提供充分的上下文:** _"Context is king."_ 与LLM协作编程时,不要吝啬提供背景信息[\[39\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L316%20Give%20Claude,context%2C%20the%20better%20the%20suggestions)。明确告知AI当前项目的**技术栈、代码结构、已有代码片段**、使用的库版本,以及你已经尝试过的方法等[\[39\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L316%20Give%20Claude,context%2C%20the%20better%20the%20suggestions)。上下文越完整,AI越能理解需求,给出针对性的建议。例如,在请求AI编写某个Vue组件时,先说明项目使用Vuetify版本、已有的全局样式等,AI就能生成更符合项目风格的代码。 - **过程式分解任务:** 避免一次让AI生成庞大复杂的代码,不妨将需求拆成**多步对话**。你可以先让AI**列出实现思路**或步骤清单,然后确认方案后再逐步让其实现每一步。这类似于指导一个新手程序员:先讨论方案,再Coding。Claude等模型擅长这种渐进式对话,会根据前文步骤逐一输出相应代码。在这个过程中,可灵活插入自己的想法,例如:"步骤2很棒,但请在实现时使用Vuetify的Grid系统。" 通过逐步细化指令,模型生成的代码将更符合预期。 - **及时反馈和明确决策:** 当AI给出多个方案或不确定措辞时,务必**明确告诉它你选择了哪一种**[\[40\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L322%20When%20Claude,things%20you%E2%80%99ve%20already%20decided%20against)。例如Claude可能提出两种API设计思路,选定其中一个后应回复:"我决定采用方案B,接下来按照这个方案继续。" 这样AI在后续对话中会聚焦于你选定的方向,避免反复纠结已否定的路线[\[40\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L322%20When%20Claude,things%20you%E2%80%99ve%20already%20decided%20against)。同样,如果AI生成的代码不符合预期,要迅速指出问题所在(bug、风格偏差或逻辑错误)并要求修改。通过这种**紧反馈回路**,AI相当于接受了快速code review,能更快调整输出方向。 - **保持风格一致性:** 对于多人协作或涉及特定编码规范的项目,可以在提示中强调代码风格和约定。例如:"请使用Go语言的标准错误处理模式,前端TS代码请遵循项目已有的ESLint规则,组件命名采用PascalCase。"Claude/GPT-4会据此自适应输出格式。实践表明,让AI扮演特定角色有助于风格统一,比如提示它"你是资深Go工程师"或"充当代码审核者",使其回答更严格遵循专业规范[\[41\]](https://www.cnblogs.com/treasury-manager/p/19217990#:~:text=OpenCode%20%E4%B8%80%E4%B8%AA%E7%A5%9E%E5%A5%87%E7%9A%84CLI%20%EF%BC%88%E5%8F%AF%E4%BB%A5%E8%9E%8D%E5%90%88Claude%20Code%2C%20iFLow,code%29%20%E2%86%90%20%E8%87%AA%E5%8A%A8%E4%BD%BF%E7%94%A8oracle%20%E7%9A%84%E6%A8%A1%E5%9E%8B%E2%86%93%20%E8%B0%83%E7%94%A8%40explore)。此外,一些高级用户会维护一个**项目说明文档**(如CLAUDE.md或README),里面列出项目编码准则,然后在每次对话开始时提供给AI参考。这相当于建立上下文的**长期记忆**。 - **控制对话长度:** 在长时间对话或大型项目中,注意LLM的上下文窗口限制。如果对话持续很多轮且内容庞杂,Claude可能出现响应变慢甚至遗忘前文细节的情况[\[42\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=After%20long%20chats%2C%20Claude%20noticeably,you%20have%20done%20so%20far)。此时有两个对策:一是**总结当前进度**,开启一个新会话,将概要和关键代码片段提供给新对话作为背景,让AI轻装上阵接着干[\[42\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=After%20long%20chats%2C%20Claude%20noticeably,you%20have%20done%20so%20far);二是利用像OpenCode这样的工具,它可以自动维护项目知识(通过索引代码库等),减轻每次都传输大量历史的负担[\[43\]](https://opencode.ai/docs#:~:text=%2Finit)[\[44\]](https://opencode.ai/docs#:~:text=You%20can%20ask%20OpenCode%20to,explain%20the%20codebase%20to%20you)。总之,要避免一口气把所有内容都塞给模型,多用**小步快跑、阶段重启**的方式确保AI始终聚焦有效信息。 通过上述Prompt工程技巧,开发者在Golang+Vue项目中与AI协作时,可以达到接近"**实时对话编程**"的体验。例如,有开发者分享他在几天内用Claude辅助完成了一个Go后端+Vue前端的CRUD应用,从中**学习了Go的新特性**(如 if err := ... 用法,Claude解释了其作用[\[45\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=if%20err%20%3A%3D%20godotenv,))也让Claude帮助生成了一些前端组件代码[\[46\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L236%20This%20is,JavaScript%20pretending%20to%20be%20HTML)。期间他总结的心得是:"让Claude就像团队新人一样工作:给足资料,明确任务,迅速反馈,必要时重开小灶(新会话)。"[\[47\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=3,getting%20lost%20in%20tutorial%20hell)。结果显示,Claude在提供代码解释、框架用法指导和产生样板代码等方面极大加速了开发,但在某些细节上仍需要人工审查和调试。这提醒我们,AI虽然强大但不是万能,"Human in the loop"(人类介入)依然重要--**AI负责快,人工负责对**。利用好AI的长处(速度、记忆、生成能力)并辅以人类的判断力,才能在全栈开发中如虎添翼。 ### 工作流程集成与工具链结合 要充分发挥Claude/GPT-4在编码中的作用,建议将其集成进日常开发流程和工具链中,实现"AI协同开发"的闭环。以下是几种可行的集成方式: - **终端集成:** 使用AI驱动的命令行助手,如Anthropic官方的Claude Code CLI或者开源的OpenCode工具(详见下文),在终端中与AI互动编程[\[48\]](https://zhuanlan.zhihu.com/p/1991170184573122515#:~:text=OpenCode%20%E6%98%AF%E4%B8%80%E4%B8%AAAI%20%E7%BC%96%E7%A8%8B%E5%8A%A9%E6%89%8B%EF%BC%8C%E8%B7%91%E5%9C%A8%E4%BD%A0%E7%9A%84%E7%BB%88%E7%AB%AF%E9%87%8C%EF%BC%88%E5%B0%B1%E6%98%AF%E9%82%A3%E4%B8%AA%E9%BB%91%E8%89%B2%E7%AA%97%E5%8F%A3%EF%BC%89%E3%80%82%20%E4%BD%A0%E8%B7%9F%E5%AE%83%E8%AF%B4%E8%AF%9D%EF%BC%8C%E5%AE%83%E5%B0%B1%E5%B8%AE%E4%BD%A0%E5%86%99%E4%BB%A3%E7%A0%81%E3%80%82%20,%E2%86%92%20%E5%AE%83%E6%94%B9)。这类工具允许AI直接读取项目文件、执行Git命令、运行测试等。例如,你在终端对AI说"帮我实现登录功能",它就能新建代码文件、写入实现并运行测试验证功能[\[48\]](https://zhuanlan.zhihu.com/p/1991170184573122515#:~:text=OpenCode%20%E6%98%AF%E4%B8%80%E4%B8%AAAI%20%E7%BC%96%E7%A8%8B%E5%8A%A9%E6%89%8B%EF%BC%8C%E8%B7%91%E5%9C%A8%E4%BD%A0%E7%9A%84%E7%BB%88%E7%AB%AF%E9%87%8C%EF%BC%88%E5%B0%B1%E6%98%AF%E9%82%A3%E4%B8%AA%E9%BB%91%E8%89%B2%E7%AA%97%E5%8F%A3%EF%BC%89%E3%80%82%20%E4%BD%A0%E8%B7%9F%E5%AE%83%E8%AF%B4%E8%AF%9D%EF%BC%8C%E5%AE%83%E5%B0%B1%E5%B8%AE%E4%BD%A0%E5%86%99%E4%BB%A3%E7%A0%81%E3%80%82%20,%E2%86%92%20%E5%AE%83%E6%94%B9)。这种方式将AI无缝嵌入开发者熟悉的环境,大大减少在浏览器对话与IDE编辑器之间来回切换的摩擦。 - **IDE插件:** 如果偏好图形界面,可以使用支持GPT的IDE插件或扩展(如VS Code的Claude插件、ChatGPT Copilot等)。这些插件通常提供代码补全、文档查询、错误诊断等功能。例如在Vue组件文件中,选中一段报错代码,让AI解释错误原因并给出修改建议。集成在IDE中的AI还能结合LSP(语言服务器协议)获取更精准的代码上下文[\[49\]](https://github.com/anomalyco/opencode#:~:text=close%20and%20pricing%20will%20drop,what%27s%20possible%20in%20the%20terminal),从而提升回答专业度。许多现代编辑器插件已经支持将当前文件、甚至整个项目知识作为提示上下文传递给LLM,提高交互质量。 - **CI/CD 流程:** 在持续集成阶段,可以借助AI做代码审查和自动修复。比如Push代码后,触发一个CI Job调用Claude来分析最近的变更是否存在代码风格违背或潜在bug,然后自动提出修改建议(甚至直接开Pull Request修复简单问题)。Anthropic的Claude Code支持类似的**代码审查子代理**,可配置ESLint、单元测试覆盖率检查等,在每次提交时由AI代理提示改进之处[\[50\]](https://cloud.tencent.com/developer/article/2574516#:~:text=Claude%20Code%E4%BB%A3%E7%A0%81%E8%A7%84%E8%8C%83%E5%AE%88%E6%8A%A4%E8%80%85%E5%AD%90%E4%BB%A3%E7%90%86%E5%AE%9E%E6%88%98%E6%8C%87%E5%8D%97%20,Code%E4%BB%A3%E7%A0%81%E8%A7%84%E8%8C%83%E5%AD%90%E4%BB%A3%E7%90%86%E6%98%AFAI%E9%A9%B1%E5%8A%A8%E7%9A%84%E4%BB%A3%E7%A0%81%E8%B4%A8%E9%87%8F%E7%AE%A1%E5%AE%B6%EF%BC%8C%E8%83%BD%E8%87%AA%E5%8A%A8%E7%BB%9F%E4%B8%80%E5%9B%A2%E9%98%9F%E4%BB%A3%E7%A0%81%E9%A3%8E%E6%A0%BC%E3%80%81%E6%89%A7%E8%A1%8C%E5%91%BD%E5%90%8D%E8%A7%84%E8%8C%83%E3%80%81%E6%A3%80%E6%9F%A5%E6%B5%8B%E8%AF%95%E8%A6%86%E7%9B%96%E7%8E%87%E3%80%82%E9%80%9A%E8%BF%87ESLint%E3%80%81Prettier%E7%AD%89%E5%B7%A5%E5%85%B7%E9%85%8D%E7%BD%AE%EF%BC%8C)。这种AI辅助的代码守护者可以减轻Reviewer负担,保证代码质量的一致性。 - **文档和测试生成:** 将AI融入开发的"后勤"工作中也是一种高效做法。例如利用GPT-4根据代码自动生成文档注释、根据函数签名生成单元测试样例等。许多开源工具(如OpenAI's Codex、或OpenCode中的特定命令)可以一键生成注释和测试代码。开发者可以让AI先生成,再自行检查润色,从而快速补齐文档和测试,提高代码可维护性。 总的来说,无论通过何种途径集成AI助手,都应当**明确AI担当的角色**:是需求的分析者、编码的执行者还是结果的评审者。合理分配这些角色,让AI参与从需求->设计->编码->测试的各个环节,并建立**反馈闭环**(例如AI写完代码立即运行测试验证,失败再由AI修复),就能够形成流水线式的智能开发流程。在实践中,随着使用AI的成熟度提高,你甚至会把一些日常繁琐任务全权交给AI处理,例如批量重构代价不高的代码、格式标准化、依赖升级兼容性修改等,而自己专注于核心业务逻辑和架构决策。这正是AI辅助开发所追求的目标:**让人类做更高价值的创造,让AI承担重复冗杂的劳动**。 ## 开源AI编程工具集成:OpenCode 与 Oh My OpenCode 为了将大模型更好地融入实际开发,一些开源项目提供了强大的工具和插件。如前所述,OpenCode是当前炙手可热的开源AI编程助手,而"Oh My OpenCode (OMO)"则是其上一款明星插件,能将单Agent升级为多Agent协作。下面我们详细介绍两者的特点、使用方法和最佳实践。 ### OpenCode:终端AI编程助手 ![]() _OpenCode终端界面示例:开发者请求修改主页按钮颜色,AI在代码库中搜索相关文件并提出修改方案。界面底部显示当前模式为"Build",使用的模型是Claude Opus 4.5(Claude Code的API型号),以及OpenCode Zen推荐的模型配置。开发者可通过快捷键与AI交互(如Tab切换Agent模式)。该界面展示了OpenCode如何理解指令并进行代码操作的过程。_[_\[51\]_](https://github.com/anomalyco/opencode#:~:text=OpenCode%20includes%20two%20built,key)[_\[52\]_](https://opencode.ai/docs#:~:text=1) OpenCode是一个**完全开源的AI编码Agent**,支持在终端、桌面应用或IDE插件中运行[\[53\]](https://opencode.ai/docs#:~:text=OpenCode%20is%20an%20open%20source,desktop%20app%2C%20or%20IDE%20extension)。它的设计初衷是提供类似Anthropic Claude Code的体验,但**不绑定特定模型**且更加可定制[\[54\]](https://github.com/anomalyco/opencode#:~:text=%2A%20100,what%27s%20possible%20in%20the%20terminal)。OpenCode可以配置使用Anthropic Claude、OpenAI GPT-4、Google PaLM乃至本地开源模型,共支持超过75种LLM型号[\[55\]](https://github.com/anomalyco/opencode#:~:text=%2A%20100,push%20the%20limits%20of%20what%27s)。这种**模型无关性**意味着开发者可根据任务需要和成本自行选择AI引擎,而不局限于Claude,实现弹性升级[\[54\]](https://github.com/anomalyco/opencode#:~:text=%2A%20100,what%27s%20possible%20in%20the%20terminal)。另外,OpenCode内置对LSP(语言服务器协议)的支持,能自动根据项目语言加载相应语言服务器,增强代码理解能力[\[49\]](https://github.com/anomalyco/opencode#:~:text=close%20and%20pricing%20will%20drop,what%27s%20possible%20in%20the%20terminal)。 **安装与初始化:** 安装OpenCode非常简单,可通过npm、Homebrew等包管理器一键安装[\[56\]](https://github.com/anomalyco/opencode#:~:text=Installation)[\[57\]](https://github.com/anomalyco/opencode#:~:text=npm%20i%20,Any%20OS)。安装后,启动前需要提供LLM的API密钥并进行简单配置[\[58\]](https://opencode.ai/docs#:~:text=Configure)[\[59\]](https://opencode.ai/docs#:~:text=If%20you%20are%20new%20to,verified%20by%20the%20OpenCode%20team)。进入项目目录运行opencode,首次使用可执行命令/init让OpenCode扫描项目,生成AGENTS.md索引文件[\[60\]](https://opencode.ai/docs#:~:text=Next%2C%20initialize%20OpenCode%20for%20the,by%20running%20the%20following%20command)。这个文件记录了项目的结构和代码模式,有点像项目的"知识图谱",建议加入版本管理[\[61\]](https://opencode.ai/docs#:~:text=This%20will%20get%20OpenCode%20to,file%20in%20the%20project%20root)。有了它,OpenCode在对话中就能更好地引用项目文件、理解代码上下文。 **工作模式与命令:** OpenCode提供了**TUI交互界面**,你可以像与人聊天一样对它下指令。例如:"请在settings.ts中添加与notes.ts类似的身份验证代码"[\[62\]](https://opencode.ai/docs#:~:text=Make%20changes)。OpenCode会理解你的自然语言,自动完成在指定文件中插入代码的操作。其强大之处在于内置了**两种Agent模式**,可通过<kbd>TAB</kbd>键切换:[\[51\]](https://github.com/anomalyco/opencode#:~:text=OpenCode%20includes%20two%20built,key) - **Plan模式(规划模式)** - _"顾问"_:该模式下AI具有只读分析权限,不直接修改代码[\[51\]](https://github.com/anomalyco/opencode#:~:text=OpenCode%20includes%20two%20built,key)。当你提出新需求,OpenCode建议先按<kbd>TAB</kbd>切换到Plan模式,它会给出实现计划[\[63\]](https://opencode.ai/docs#:~:text=1)。例如你说"添加软删除功能",Plan模式下AI可能回复:"1)在数据库加deleted字段,2)后端新增恢复接口,3)前端加回收站页面…"[\[64\]](https://opencode.ai/docs#:~:text=Now%20let%E2%80%99s%20describe%20what%20we,want%20it%20to%20do)。规划模式会**禁用自动执行**,确保AI的提议经过你审阅。它甚至会在执行外部命令前征求同意(例如运行bash或安装依赖,需要你确认)[\[65\]](https://github.com/anomalyco/opencode#:~:text=%2A%20build%20,unfamiliar%20codebases%20or%20planning%20changes)。**最佳实践**是先让AI在Plan模式列出步骤和方案,开发者可以补充或更正细节[\[66\]](https://opencode.ai/docs#:~:text=2)。如觉得方案不完善,可继续对话调整直到满意为止[\[67\]](https://opencode.ai/docs#:~:text=2)。 - **Build模式(构建模式)** - _"执行者"_:在你接受规划后,按<kbd>TAB</kbd>回到Build模式,命令AI执行更改[\[68\]](https://opencode.ai/docs#:~:text=3)。Build模式下AI有**完全访问权限**,可以编辑文件、创建新文件、运行测试或Git命令等[\[51\]](https://github.com/anomalyco/opencode#:~:text=OpenCode%20includes%20two%20built,key)。延续上例,当你说"计划看起来不错,请动手实现",OpenCode将依次修改代码并可能运行项目验证[\[69\]](https://opencode.ai/docs#:~:text=Once%20you%20feel%20comfortable%20with,hitting%20the%20Tab%20key%20again)。它会将所有操作结果(如diff或者终端输出)显示在对话中,方便你跟踪进度。如果修改不符合预期,还可以及时喊停。**小贴士:**对于非常简单的修改,也可直接在Build模式下让AI改,无需先plan[\[62\]](https://opencode.ai/docs#:~:text=Make%20changes)--但前提是你对改动很有把握并已提供足够细节,否则直接构建可能出现偏差。 OpenCode在交互上还有几个贴心功能:你可以在对话中通过@文件名快速引用项目文件,AI会自动加载其内容作为上下文[\[70\]](https://opencode.ai/docs#:~:text=Tip);如果AI修改了文件,你可以用/undo命令**撤销更改**,一步步回滚到之前状态[\[71\]](https://opencode.ai/docs#:~:text=Let%E2%80%99s%20say%20you%20ask%20OpenCode,to%20make%20some%20changes);完成某个任务后,用/share可以生成对话的分享链接,方便团队其他成员查看这次AI改动的经过[\[72\]](https://opencode.ai/docs#:~:text=Share)。这些特性能鼓励开发者大胆尝试AI修改,因为**所有操作都可追溯和撤销**,相当于给AI上了一道"安全网"。 **最佳实践提示:** 使用OpenCode时,养成一些习惯可以大大提升体验: - **将AI当作新人**:对OpenCode的指令要清晰具体,必要时分解成子任务。它官方文档建议开发者"像对团队新人讲解任务那样与AI对话"[\[73\]](https://opencode.ai/docs#:~:text=You%20want%20to%20give%20OpenCode,junior%20developer%20on%20your%20team)。这意味着描述需求时要交代背景、"Done的定义"等,使AI少走弯路。 - **多给示例和引用**:如果要AI写类似已有代码的功能,引用相关文件路径并指出相似之处[\[74\]](https://opencode.ai/docs#:~:text=We%20need%20to%20add%20authentication,look%20at%20how%20this%20is)。例如:"参考notes.ts里的做法,在settings.ts实现类似逻辑"[\[75\]](https://opencode.ai/docs#:~:text=without%20having%20to%20review%20the,plan%20first)。OpenCode会据此调取对应文件,提高修改正确率。 - **审阅Plan并反馈**:Plan模式输出方案后务必仔细检查,每条步骤是否符合预期。如有遗漏或不妥,直接在对话中反馈修改。**不要吝惜反馈**--AI需要你的指引来校准方向[\[40\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L322%20When%20Claude,things%20you%E2%80%99ve%20already%20decided%20against)。充分的前期沟通会减少后期反复。 - **小步提交**:AI每完成一部分改动,可先在本地运行测试或预览效果,再决定让其继续下一步。分阶段验收能及时发现问题,便于快速/undo回滚并调整Prompt。 OpenCode的出现,使个人开发者也能拥有"AI对话编程"的高效体验。有博文称其是"终端里的AI老司机",让写代码"爽到飞起"[\[76\]](https://blog.csdn.net/u012094427/article/details/148866474#:~:text=%E4%BB%8A%E5%A4%A9%E6%88%91%E4%BB%AC%E8%A6%81%E8%81%8A%E7%9A%84%E7%A1%AC%E6%A0%B8%E8%AF%9D%E9%A2%98%EF%BC%8C%E6%98%AF%E4%B8%AA%E8%AE%A9%E6%9E%81%E5%AE%A2%E4%BB%AC%E9%A2%A4%E6%8A%96%E3%80%81%E8%AE%A9%E7%A8%8B%E5%BA%8F%E5%91%98%E4%BB%AC%E5%B0%96%E5%8F%AB%EF%BC%8C%E8%AE%A9%E5%86%99%E4%BB%A3%E7%A0%81%E7%88%BD%E5%88%B0%E9%A3%9E%E8%B5%B7%E7%9A%84%E5%AD%98%E5%9C%A8%E2%80%94%E2%80%94OpenCode%EF%BC%8C%E5%BC%80%E6%BA%90AI%E7%BB%88%E7%AB%AF%E7%BC%96%E7%A0%81%E5%8A%A9%E6%89%8B%E3%80%82%20%E5%9C%A8AI%E5%85%A8%E8%83%BD%E5%86%99%E4%BB%A3%E7%A0%81%E3%80%81Copilot%E5%AE%B6%E5%A4%A7%E4%B8%9A%E5%A4%A7%E3%80%81%20)。而当OpenCode与更强大的插件Oh My OpenCode结合后,威力更是倍增--我们接下来就介绍OMO插件如何将AI辅助开发推向新的高度。 ### Oh My OpenCode:Sisyphus多代理增强插件 Oh My OpenCode(简称OMO)是OpenCode的明星社区插件,由开发者Yeongyu Kim开源。它被称为"**最强Agent挂架**(Agent Harness)",内部代号"Sisyphus",寓意让AI像西西弗斯般不懈耕耘,为你完成复杂开发任务[\[77\]](https://x.com/Nateemerson/status/2002043382953288046/photo/1#:~:text=YeonGyu,and%20practices%20for%20agentic%20coding)[\[78\]](https://github.com/code-yeongyu/oh-my-opencode#:~:text=The%20Best%20Agent%20Harness,Agent%20that%20codes%20like%20you)。简单来说,OMO通过引入**多智能体协作**和**优化的提示策略**,将单一的OpenCode助手升级为一个"**AI开发团队**"。其主要特性和最佳用法包括: - **多代理编排系统:** Sisyphus采用前沿的**多代理协同架构**,将开发任务拆解后分配给不同专长的子代理协作完成[\[79\]](https://post.smzdm.com/p/aog8xq7m#:~:text=%E4%B8%80%E4%BA%BA%E6%8A%B5%E4%B8%80%E4%B8%AA%E5%BC%80%E5%8F%91%E5%9B%A2%E9%98%9F%E7%9A%84AI%E7%BC%96%E7%A8%8B%E7%A5%9E%E5%99%A8%E5%AE%8C%E5%85%A8%E6%8C%87%E5%8D%97%20,%E5%9C%A8%E6%88%90%E6%9C%AC%E6%8E%A7%E5%88%B6%E6%96%B9%E9%9D%A2%EF%BC%8C%E8%AF%A5%E7%B3%BB%E7%BB%9F%E6%94%AF%E6%8C%81%E5%A4%9A%E6%A8%A1%E5%9E%8B%E6%B7%B7%E5%90%88%E4%BD%BF%E7%94%A8%E7%AD%96%E7%95%A5%E3%80%82%E9%80%9A%E8%BF%87%E9%85%8D%E7%BD%AE%EF%BC%8C%E5%8F%AF%E4%BB%A5%E5%B0%86)[\[41\]](https://www.cnblogs.com/treasury-manager/p/19217990#:~:text=OpenCode%20%E4%B8%80%E4%B8%AA%E7%A5%9E%E5%A5%87%E7%9A%84CLI%20%EF%BC%88%E5%8F%AF%E4%BB%A5%E8%9E%8D%E5%90%88Claude%20Code%2C%20iFLow,code%29%20%E2%86%90%20%E8%87%AA%E5%8A%A8%E4%BD%BF%E7%94%A8oracle%20%E7%9A%84%E6%A8%A1%E5%9E%8B%E2%86%93%20%E8%B0%83%E7%94%A8%40explore)。在OMO中,OpenCode不再只有一个AI在工作,而是一个主代理统筹,底下有如"Oracle预言家"、"Explorer探索者"、"Coder编码员"等多个子Agent各司其职[\[80\]](https://www.cnblogs.com/treasury-manager/p/19217990#:~:text=OpenCode%20%E4%B8%80%E4%B8%AA%E7%A5%9E%E5%A5%87%E7%9A%84CLI%20%EF%BC%88%E5%8F%AF%E4%BB%A5%E8%9E%8D%E5%90%88Claude%20Code%2C%20iFLow,code%29%20%E2%86%90%20%E8%87%AA%E5%8A%A8%E4%BD%BF%E7%94%A8oracle%20%E7%9A%84%E6%A8%A1%E5%9E%8B%E2%86%93%20%E8%B0%83%E7%94%A8%40explore)。例如,当你抛给系统一个大型需求,主代理会调用Oracle子代理来分析需求/查询知识,再调用Explorer代理搜索代码库甚至外部资料,最后由Coder代理生成代码方案,主代理综合各方反馈给出最终实现[\[80\]](https://www.cnblogs.com/treasury-manager/p/19217990#:~:text=OpenCode%20%E4%B8%80%E4%B8%AA%E7%A5%9E%E5%A5%87%E7%9A%84CLI%20%EF%BC%88%E5%8F%AF%E4%BB%A5%E8%9E%8D%E5%90%88Claude%20Code%2C%20iFLow,code%29%20%E2%86%90%20%E8%87%AA%E5%8A%A8%E4%BD%BF%E7%94%A8oracle%20%E7%9A%84%E6%A8%A1%E5%9E%8B%E2%86%93%20%E8%B0%83%E7%94%A8%40explore)。这种**软并行**的流程让复杂任务的处理效率和质量显著提高--相当于同时拥有多位AI专家在协同开发。 - **多模型混合策略:** OMO支持配置不同的LLM模型给不同子代理,以充分利用各模型所长并控制成本[\[79\]](https://post.smzdm.com/p/aog8xq7m#:~:text=%E4%B8%80%E4%BA%BA%E6%8A%B5%E4%B8%80%E4%B8%AA%E5%BC%80%E5%8F%91%E5%9B%A2%E9%98%9F%E7%9A%84AI%E7%BC%96%E7%A8%8B%E7%A5%9E%E5%99%A8%E5%AE%8C%E5%85%A8%E6%8C%87%E5%8D%97%20,%E5%9C%A8%E6%88%90%E6%9C%AC%E6%8E%A7%E5%88%B6%E6%96%B9%E9%9D%A2%EF%BC%8C%E8%AF%A5%E7%B3%BB%E7%BB%9F%E6%94%AF%E6%8C%81%E5%A4%9A%E6%A8%A1%E5%9E%8B%E6%B7%B7%E5%90%88%E4%BD%BF%E7%94%A8%E7%AD%96%E7%95%A5%E3%80%82%E9%80%9A%E8%BF%87%E9%85%8D%E7%BD%AE%EF%BC%8C%E5%8F%AF%E4%BB%A5%E5%B0%86)。例如主代理和编码代理用Claude的高性能模型,而探索/搜索代理用开源模型或较廉价的API,以降低开销[\[79\]](https://post.smzdm.com/p/aog8xq7m#:~:text=%E4%B8%80%E4%BA%BA%E6%8A%B5%E4%B8%80%E4%B8%AA%E5%BC%80%E5%8F%91%E5%9B%A2%E9%98%9F%E7%9A%84AI%E7%BC%96%E7%A8%8B%E7%A5%9E%E5%99%A8%E5%AE%8C%E5%85%A8%E6%8C%87%E5%8D%97%20,%E5%9C%A8%E6%88%90%E6%9C%AC%E6%8E%A7%E5%88%B6%E6%96%B9%E9%9D%A2%EF%BC%8C%E8%AF%A5%E7%B3%BB%E7%BB%9F%E6%94%AF%E6%8C%81%E5%A4%9A%E6%A8%A1%E5%9E%8B%E6%B7%B7%E5%90%88%E4%BD%BF%E7%94%A8%E7%AD%96%E7%95%A5%E3%80%82%E9%80%9A%E8%BF%87%E9%85%8D%E7%BD%AE%EF%BC%8C%E5%8F%AF%E4%BB%A5%E5%B0%86)。有文章指出OMO可以通过配置,实现"大模型做决策,小模型跑腿"的组合,在保证效果的同时节约预算[\[79\]](https://post.smzdm.com/p/aog8xq7m#:~:text=%E4%B8%80%E4%BA%BA%E6%8A%B5%E4%B8%80%E4%B8%AA%E5%BC%80%E5%8F%91%E5%9B%A2%E9%98%9F%E7%9A%84AI%E7%BC%96%E7%A8%8B%E7%A5%9E%E5%99%A8%E5%AE%8C%E5%85%A8%E6%8C%87%E5%8D%97%20,%E5%9C%A8%E6%88%90%E6%9C%AC%E6%8E%A7%E5%88%B6%E6%96%B9%E9%9D%A2%EF%BC%8C%E8%AF%A5%E7%B3%BB%E7%BB%9F%E6%94%AF%E6%8C%81%E5%A4%9A%E6%A8%A1%E5%9E%8B%E6%B7%B7%E5%90%88%E4%BD%BF%E7%94%A8%E7%AD%96%E7%95%A5%E3%80%82%E9%80%9A%E8%BF%87%E9%85%8D%E7%BD%AE%EF%BC%8C%E5%8F%AF%E4%BB%A5%E5%B0%86)。这对需要长时间运行的自动化Agent特别重要。实际使用中,很多人将GPT-4、Claude、甚至本地模型共同挂接到OMO,让它们各尽其用,整套系统智能且经济。 - **全流程自动执行(Ultrawork模式):** **"不用读文档,上来就干!"** 这是不少OMO用户的直观感受[\[81\]](https://github.com/code-yeongyu/oh-my-opencode/blob/dev/README.zh-cn.md#:~:text=oh,%E8%80%81%E5%AE%9E%E8%AF%B4%EF%BC%8C%E7%94%9A%E8%87%B3%E4%B8%8D%E7%94%A8%E8%B4%B9%E5%BF%83%E8%AF%BB%E6%96%87%E6%A1%A3%E3%80%82%E5%8F%AA%E9%9C%80%E5%86%99%E4%BD%A0%E7%9A%84%E6%8F%90%E7%A4%BA%E3%80%82%E5%8C%85%E5%90%AB%27ultrawork%27%20%E5%85%B3%E9%94%AE%E8%AF%8D%E3%80%82Sisyphus%20%E4%BC%9A%E5%88%86%E6%9E%90%E7%BB%93%E6%9E%84%EF%BC%8C%E6%94%B6%E9%9B%86%E4%B8%8A%E4%B8%8B%E6%96%87%EF%BC%8C%E6%8C%96%E6%8E%98%E5%A4%96%E9%83%A8%E6%BA%90%E4%BB%A3%E7%A0%81%EF%BC%8C%E7%84%B6%E5%90%8E%E6%8C%81%E7%BB%AD%E6%8E%A8%E8%BF%9B)。OMO内置了一种特殊的提示触发机制,例如当在对话中包含关键词"ultrawork"时,Sisyphus会**自动接管任务**,从分析、检索到编码一步步执行下去,几乎无需人介入[\[81\]](https://github.com/code-yeongyu/oh-my-opencode/blob/dev/README.zh-cn.md#:~:text=oh,%E8%80%81%E5%AE%9E%E8%AF%B4%EF%BC%8C%E7%94%9A%E8%87%B3%E4%B8%8D%E7%94%A8%E8%B4%B9%E5%BF%83%E8%AF%BB%E6%96%87%E6%A1%A3%E3%80%82%E5%8F%AA%E9%9C%80%E5%86%99%E4%BD%A0%E7%9A%84%E6%8F%90%E7%A4%BA%E3%80%82%E5%8C%85%E5%90%AB%27ultrawork%27%20%E5%85%B3%E9%94%AE%E8%AF%8D%E3%80%82Sisyphus%20%E4%BC%9A%E5%88%86%E6%9E%90%E7%BB%93%E6%9E%84%EF%BC%8C%E6%94%B6%E9%9B%86%E4%B8%8A%E4%B8%8B%E6%96%87%EF%BC%8C%E6%8C%96%E6%8E%98%E5%A4%96%E9%83%A8%E6%BA%90%E4%BB%A3%E7%A0%81%EF%BC%8C%E7%84%B6%E5%90%8E%E6%8C%81%E7%BB%AD%E6%8E%A8%E8%BF%9B)。开发者只要提出高层次目标,如"ultrawork: 实现一个博客网站的前后端,包括用户注册、发帖、评论"等,接下来Sisyphus就会自主规划子任务、调用子代理查资料、写代码、测试,迭代直到完成[\[81\]](https://github.com/code-yeongyu/oh-my-opencode/blob/dev/README.zh-cn.md#:~:text=oh,%E8%80%81%E5%AE%9E%E8%AF%B4%EF%BC%8C%E7%94%9A%E8%87%B3%E4%B8%8D%E7%94%A8%E8%B4%B9%E5%BF%83%E8%AF%BB%E6%96%87%E6%A1%A3%E3%80%82%E5%8F%AA%E9%9C%80%E5%86%99%E4%BD%A0%E7%9A%84%E6%8F%90%E7%A4%BA%E3%80%82%E5%8C%85%E5%90%AB%27ultrawork%27%20%E5%85%B3%E9%94%AE%E8%AF%8D%E3%80%82Sisyphus%20%E4%BC%9A%E5%88%86%E6%9E%90%E7%BB%93%E6%9E%84%EF%BC%8C%E6%94%B6%E9%9B%86%E4%B8%8A%E4%B8%8B%E6%96%87%EF%BC%8C%E6%8C%96%E6%8E%98%E5%A4%96%E9%83%A8%E6%BA%90%E4%BB%A3%E7%A0%81%EF%BC%8C%E7%84%B6%E5%90%8E%E6%8C%81%E7%BB%AD%E6%8E%A8%E8%BF%9B)。在B站等平台的演示视频中,可以看到OpenCode + OMO真的实现了**全程零干预**地产出项目雏形[\[82\]](https://www.youtube.com/watch?v=twFjLiy2Pmc#:~:text=%E8%A7%86%E9%A2%91%E7%AE%80%E4%BB%8B%EF%BC%9A%20%E6%9C%AC%E6%9C%9F%E8%A7%86%E9%A2%91%E8%AF%A6%E7%BB%86%E6%BC%94%E7%A4%BA%E4%BA%86%E5%A6%82%E4%BD%95%E5%9C%A8Opencode%E4%B8%AD%E4%BD%BF%E7%94%A8%E6%9C%80%E5%BC%BA%E5%BC%80%E6%BA%90%E6%8F%92%E4%BB%B6Oh%20My%20Opencode%EF%BC%88OMO%EF%BC%89%EF%BC%8C%E5%B0%86%E5%8D%95%E4%B8%80AI%E7%BC%96%E7%A8%8B%E5%8A%A9%E6%89%8B%E5%8D%87%E7%BA%A7%E4%B8%BA%E5%A4%9A%E6%A8%A1%E5%9E%8B%E5%8D%8F%E4%BD%9C%E7%9A%84AI%E5%BC%80%E5%8F%91%E5%9B%A2%E9%98%9F%EF%BC%81)[\[83\]](https://x.com/AISuperDomain/status/2009823408301994209#:~:text=OpenCode%E7%9A%84%E6%9C%80%E5%BC%BA%E5%BC%80%E6%BA%90%E6%8F%92%E4%BB%B6oh%20my%20opencode%E7%A1%AE%E5%AE%9E%E9%9D%9E%E5%B8%B8%E5%A5%BD%E7%94%A8%20%E8%A7%86%E9%A2%91%E7%AE%80%E4%BB%8B%EF%BC%9A%20%E6%9C%AC%E6%9C%9F%E8%A7%86%E9%A2%91%E8%AF%A6%E7%BB%86%E6%BC%94%E7%A4%BA%E4%BA%86%E5%A6%82%E4%BD%95%E5%9C%A8Opencode%E4%B8%AD%E4%BD%BF%E7%94%A8%E6%9C%80%E5%BC%BA%E5%BC%80%E6%BA%90%E6%8F%92%E4%BB%B6Oh,My%20Opencode%EF%BC%88OMO%EF%BC%89%EF%BC%8C%E5%B0%86%E5%8D%95%E4%B8%80AI%E7%BC%96%E7%A8%8B%E5%8A%A9%E6%89%8B%E5%8D%87%E7%BA%A7%E4%B8%BA%E5%A4%9A%E6%A8%A1%E5%9E%8B%E5%8D%8F%E4%BD%9C%E7%9A%84AI%E5%BC%80%E5%8F%91%E5%9B%A2%E9%98%9F%EF%BC%81%20%E6%A0%B8%E5%BF%83%E5%86%85%E5%AE%B9%EF%BC%9AOMO%E6%8F%92%E4%BB%B6)。当然如此长链路的执行可能偶有偏差,但这展示了Agentic AI开发的巨大潜力。对于使用OMO的我们,建议在较明确且可分解的项目上尝试"Ultrawork"模式,静待AI团队跑完全流程,再对结果集中验收修改。 - **可定制 Hooks 与插件:** OMO不仅提供默认的智能体团队,还允许高级用户扩展自定义**Hooks**和插件逻辑[\[84\]](https://blog.csdn.net/gitblog_00895/article/details/144862506#:~:text=oh,)。其Hooks系统支持在AI执行过程的关键节点插入自定义代码,以实现特殊监控或操作[\[84\]](https://blog.csdn.net/gitblog_00895/article/details/144862506#:~:text=oh,)。比如可以在每次子代理调用外部API前触发Hook检查额度,或在生成代码后通过Hook自动运行格式化工具[\[84\]](https://blog.csdn.net/gitblog_00895/article/details/144862506#:~:text=oh,)。这赋予OMO极高的可扩展性,能够适应各种个性化需求。因此最佳实践是:在熟练掌握默认OMO能力后,再根据自己团队的流程编写Hooks或定制代理,打造**专属的AI流水线**。目前社区也涌现了许多OMO的附加插件和配置心得,可借鉴来强化你的AI团队。 作为OpenCode的"超充电"版,Oh My OpenCode显著提升了AI编程助手的自主性和专业度。有用户戏称:"用了OMO,仿佛一个人带着一支AI舰队写代码"--一人顶一个团队的效率令人震撼[\[79\]](https://post.smzdm.com/p/aog8xq7m#:~:text=%E4%B8%80%E4%BA%BA%E6%8A%B5%E4%B8%80%E4%B8%AA%E5%BC%80%E5%8F%91%E5%9B%A2%E9%98%9F%E7%9A%84AI%E7%BC%96%E7%A8%8B%E7%A5%9E%E5%99%A8%E5%AE%8C%E5%85%A8%E6%8C%87%E5%8D%97%20,%E5%9C%A8%E6%88%90%E6%9C%AC%E6%8E%A7%E5%88%B6%E6%96%B9%E9%9D%A2%EF%BC%8C%E8%AF%A5%E7%B3%BB%E7%BB%9F%E6%94%AF%E6%8C%81%E5%A4%9A%E6%A8%A1%E5%9E%8B%E6%B7%B7%E5%90%88%E4%BD%BF%E7%94%A8%E7%AD%96%E7%95%A5%E3%80%82%E9%80%9A%E8%BF%87%E9%85%8D%E7%BD%AE%EF%BC%8C%E5%8F%AF%E4%BB%A5%E5%B0%86)[\[85\]](https://post.smzdm.com/p/aog8xq7m#:~:text=%E5%9C%A8%E6%88%90%E6%9C%AC%E6%8E%A7%E5%88%B6%E6%96%B9%E9%9D%A2%EF%BC%8C%E8%AF%A5%E7%B3%BB%E7%BB%9F%E6%94%AF%E6%8C%81%E5%A4%9A%E6%A8%A1%E5%9E%8B%E6%B7%B7%E5%90%88%E4%BD%BF%E7%94%A8%E7%AD%96%E7%95%A5%E3%80%82%E9%80%9A%E8%BF%87%E9%85%8D%E7%BD%AE%EF%BC%8C%E5%8F%AF%E4%BB%A5%E5%B0%86%20)。不过也需注意,OMO毕竟处于新兴阶段,全自动模式下如果任务不清晰,AI可能产生偏差 output。因此,**明确的任务描述**依然是成功的前提。在对OMO下达指令时,尽量描述清楚最终期望和约束条件,并监控关键输出节点。如果结果不理想,可以通过交互引导主代理调整方案或重试特定子任务。相信随着社区不断优化Sisyphus的提示技巧和反馈机制,OMO会变得越来越"稳"。对于敢于尝新的开发者,它无疑是值得深入研究的利器:熟练掌握后,你将拥有前所未有的**开发自动化能力**,显著缩短从想法到产品的路径。 ## 总结 从Claude Code Skills到OpenCode再到Oh My OpenCode,我们见证了AI辅助开发从**手工提示**走向**模块化复用**、从**单点对话**走向**多智能体协作**的演进。Claude Code Skills教会我们如何将**提示词工程升级为可复用的技能模块**--通过YAML结构化知识,渐进披露上下文,让AI随时调用专业技能包,大幅减少重复劳动[\[5\]](https://cloud.tencent.com/developer/article/2616585#:~:text=Claude%20Skills%E6%98%AFAnthropic%E6%8E%A8%E5%87%BA%E7%9A%84AI%E5%8A%9F%E8%83%BD%E9%9D%A9%E5%91%BD%EF%BC%8C%E5%8F%AF%E5%B0%86%E7%94%A8%E6%88%B7%E4%BD%BF%E7%94%A8AI%E7%9A%84%E4%B9%A0%E6%83%AF%E6%96%87%E4%BB%B6%E5%8C%96%E7%AE%A1%E7%90%86%E3%80%82%E5%AE%83%E8%83%BD%E8%A7%A3%E5%86%B3Claude%E5%81%A5%E5%BF%98%E3%80%81%E9%9C%80%E9%87%8D%E5%A4%8D%E6%8F%90%E7%A4%BA%E8%AF%8D%E7%9A%84%E9%97%AE%E9%A2%98%EF%BC%8C%E5%B0%86%E4%BB%BB%E5%8A%A1%E8%AF%B4%E6%98%8E%E3%80%81%E5%B7%A5%E5%85%B7%E4%BB%A3%E7%A0%81%E7%AD%89%E6%89%93%E5%8C%85%E6%88%90%20)[\[6\]](https://www.facebook.com/iamvista/photos/%E6%9F%90%E5%A4%A9%E6%B7%B1%E5%A4%9C%E6%88%91%E6%AD%A3%E5%9C%A8%E8%B6%95%E4%B8%80%E4%BB%BD%E6%96%87%E4%BB%B6%E5%A4%A9%E5%95%8A%E5%90%8C%E6%A8%A3%E7%9A%84%E6%9E%B6%E6%A7%8B%E5%90%8C%E6%A8%A3%E7%9A%84%E8%AA%9E%E6%B0%A3%E5%90%8C%E6%A8%A3%E7%9A%84%E6%A0%BC%E5%BC%8F%E8%A6%81%E6%B1%82%E4%BD%86%E6%88%91%E5%8F%88%E5%BE%97%E9%87%8D%E6%96%B0%E6%89%93%E4%B8%80%E6%AC%A1%E8%AB%8B%E7%94%A8%E9%80%99%E5%80%8B%E6%A0%BC%E5%BC%8F%E8%AB%8B%E5%85%88%E5%95%8F%E4%B8%89%E5%80%8B%E6%BE%84%E6%B8%85%E5%95%8F%E9%A1%8C%E8%AB%8B%E6%8A%8A%E8%BC%B8%E5%87%BA%E5%88%86%E6%88%90%E5%9B%9B%E6%AE%B5%E8%AB%8B%E9%99%84%E4%B8%8A%E5%8F%AF%E7%9B%B4%E6%8E%A5%E8%B2%BC%E5%88%B0-notion-%E7%9A%84/10162293093624053/#:~:text=,%E6%88%91%E6%80%8E%E9%BA%BC%E5%81%9A%E4%B8%80%E5%80%8B%E5%A5%BDskill%EF%BC%8C%E8%AE%8A%E6%88%90skill)。OpenCode则以开源之力,将AI编程助手引入开发者日常工具链,在终端或IDE中实现了与AI无缝结对编程[\[48\]](https://zhuanlan.zhihu.com/p/1991170184573122515#:~:text=OpenCode%20%E6%98%AF%E4%B8%80%E4%B8%AAAI%20%E7%BC%96%E7%A8%8B%E5%8A%A9%E6%89%8B%EF%BC%8C%E8%B7%91%E5%9C%A8%E4%BD%A0%E7%9A%84%E7%BB%88%E7%AB%AF%E9%87%8C%EF%BC%88%E5%B0%B1%E6%98%AF%E9%82%A3%E4%B8%AA%E9%BB%91%E8%89%B2%E7%AA%97%E5%8F%A3%EF%BC%89%E3%80%82%20%E4%BD%A0%E8%B7%9F%E5%AE%83%E8%AF%B4%E8%AF%9D%EF%BC%8C%E5%AE%83%E5%B0%B1%E5%B8%AE%E4%BD%A0%E5%86%99%E4%BB%A3%E7%A0%81%E3%80%82%20,%E2%86%92%20%E5%AE%83%E6%94%B9)。其Plan/Build双模式和Undo/Redo等机制,被证明是安全高效地让AI参与编码的最佳实践[\[63\]](https://opencode.ai/docs#:~:text=1)[\[71\]](https://opencode.ai/docs#:~:text=Let%E2%80%99s%20say%20you%20ask%20OpenCode,to%20make%20some%20changes)。而Oh My OpenCode更进一步,引入多Agent架构和自动化工作流,展示了"AI团队开发"的雏形[\[79\]](https://post.smzdm.com/p/aog8xq7m#:~:text=%E4%B8%80%E4%BA%BA%E6%8A%B5%E4%B8%80%E4%B8%AA%E5%BC%80%E5%8F%91%E5%9B%A2%E9%98%9F%E7%9A%84AI%E7%BC%96%E7%A8%8B%E7%A5%9E%E5%99%A8%E5%AE%8C%E5%85%A8%E6%8C%87%E5%8D%97%20,%E5%9C%A8%E6%88%90%E6%9C%AC%E6%8E%A7%E5%88%B6%E6%96%B9%E9%9D%A2%EF%BC%8C%E8%AF%A5%E7%B3%BB%E7%BB%9F%E6%94%AF%E6%8C%81%E5%A4%9A%E6%A8%A1%E5%9E%8B%E6%B7%B7%E5%90%88%E4%BD%BF%E7%94%A8%E7%AD%96%E7%95%A5%E3%80%82%E9%80%9A%E8%BF%87%E9%85%8D%E7%BD%AE%EF%BC%8C%E5%8F%AF%E4%BB%A5%E5%B0%86)[\[85\]](https://post.smzdm.com/p/aog8xq7m#:~:text=%E5%9C%A8%E6%88%90%E6%9C%AC%E6%8E%A7%E5%88%B6%E6%96%B9%E9%9D%A2%EF%BC%8C%E8%AF%A5%E7%B3%BB%E7%BB%9F%E6%94%AF%E6%8C%81%E5%A4%9A%E6%A8%A1%E5%9E%8B%E6%B7%B7%E5%90%88%E4%BD%BF%E7%94%A8%E7%AD%96%E7%95%A5%E3%80%82%E9%80%9A%E8%BF%87%E9%85%8D%E7%BD%AE%EF%BC%8C%E5%8F%AF%E4%BB%A5%E5%B0%86%20)。利用OMO,复杂项目也许只需提出愿景,AI代理即可协同完成大部分实现,开发者转为高层监督和收尾调整的角色。 当然,再强大的AI工具也需要人来驾驭。**明确的问题定义、合理的分工接口、及时的反馈干预**,依然是成功应用AI的关键。对于Golang+Vue3这类前后端结合的项目,我们强调了提供充足上下文、分步指导AI、结合测试验证等提示词设计要点,以充分发挥Claude/GPT-4的长处[\[39\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L316%20Give%20Claude,context%2C%20the%20better%20the%20suggestions)[\[40\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L322%20When%20Claude,things%20you%E2%80%99ve%20already%20decided%20against)。当这些经验与像OpenCode这样的平台结合,AI辅助编程就真正融入了软件开发生命周期。从代码生成、重构到调试、测试,各环节皆有AI参与,其价值不再停留在"生成几段代码"上,而是成为一种**开发范式的升级**。 正如Anthropic在文档中所言:未来的开发者将不仅仅会写代码,更要善于**打造和利用AI技能**[\[23\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=1)。通过模块化的Skills,我们可以将个人经验沉淀,让AI持续进化成为领域专家;通过工具与插件,我们可以让AI深度融入团队协作,实现人机共创。当下的这些探索,正是迈向"自我进化软件"的垫脚石。希望本指南的调研和总结,能帮助你在实践中少走弯路,加速拥抱AI赋能的全新开发模式。在不远的将来,写代码或许就像与聪明的同事对话一样自然,而我们将有更多时间专注于创造真正有价值的东西。让我们拭目以待,也积极参与这一场AI与编程的革命吧! **参考文献:** - Anthropic Claude Skills 官方文档及教程[\[9\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=%E6%8A%80%E8%83%BD%E5%AE%9A%E4%B9%89%E6%A0%BC%E5%BC%8F)[\[86\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=%E4%B8%BA%E4%BA%86%E9%81%BF%E5%85%8D%E2%80%9C%E4%BB%8B%E7%BB%8D%E5%8A%9F%E8%83%BD%E4%BD%86%E7%BC%BA%E5%B0%91%E5%8F%AF%E6%A3%80%E9%AA%8C%E7%BB%93%E8%AE%BA%E2%80%9D%EF%BC%8C%E6%9C%AC%E6%96%87%E5%85%88%E6%8A%8A%20Skills%20%E7%9A%84%E6%9E%B6%E6%9E%84%E4%BB%B7%E5%80%BC%E6%94%B6%E6%95%9B%E6%88%90%E4%B8%80%E5%8F%A5%E5%8F%AF%E9%AA%8C%E8%AF%81%E7%9A%84%E5%91%BD%E9%A2%98%EF%BC%9A) - 社区博客与实践案例(CSDN、知乎等)对Claude Code/Skills的解读[\[15\]](https://blog.csdn.net/yangshangwei/article/details/156836796#:~:text=%E4%B8%80%E4%B8%AA%E5%8F%AF%E8%90%BD%E5%9C%B0%E7%9A%84%E4%B8%89%E6%AD%A5%E6%B3%95,3%20%E7%AC%AC%E4%B8%89%E6%AD%A5%EF%BC%9A%E6%8A%8AClaude%20%E5%BD%93%E2%80%9C%E6%90%AD%E5%AD%90%E2%80%9D%EF%BC%8C%E8%80%8C%E4%B8%8D%E6%98%AF%E6%90%9C%E7%B4%A2%E6%A1%86)[\[18\]](https://hbwdj.gov.cn/appbdetail-imqqsmrp9897358.d#:~:text=%E9%AA%97%E4%BD%A0%E7%9A%84%EF%BC%8C%E5%85%B6%E5%AE%9EAI%E6%A0%B9%E6%9C%AC%E4%B8%8D%E9%9C%80%E8%A6%81%E9%82%A3%E4%B9%88%E5%A4%9A%E6%8F%90%E7%A4%BA%E8%AF%8D%E3%80%82%20%E4%BD%A0%E5%8F%AA%E9%9C%80%E8%A6%81%E8%B0%83%E7%94%A8AI%20%E6%9C%AC%E8%BA%AB%E7%9A%84%E2%80%9CSkill%20Creator%E2%80%9D%E6%8A%80%E8%83%BD%EF%BC%8C%E7%94%A8%E4%BD%A0%E7%9A%84%E8%AF%AD%E8%A8%80%E6%8F%8F%E8%BF%B0%E8%87%AA%E5%B7%B1%E7%9A%84%E9%9C%80%E6%B1%82%EF%BC%8C%E8%AE%A9AI%E8%87%AA%E5%8A%A8%E5%B8%AE%E4%BD%A0%E7%94%9F%E6%88%90%E4%B8%80%E9%97%A8%E6%8A%80%E8%83%BD%EF%BC%8C%E4%BD%BF%E7%94%A8%E8%B5%B7%E6%9D%A5%E9%9D%9E%E5%B8%B8%E5%8F%8B%E5%A5%BD%EF%BC%8CAI%E4%BC%9A%E4%B8%80%E6%AD%A5%E6%AD%A5%E5%BC%95%E5%AF%BC%E4%BD%A0%E8%AF%B4%E5%87%BA%E4%BD%A0%E7%9A%84%E9%9C%80%E6%B1%82%EF%BC%8C%E4%BD%A0%E5%8F%AA%20) - OpenCode项目仓库README及官方文档[\[51\]](https://github.com/anomalyco/opencode#:~:text=OpenCode%20includes%20two%20built,key)[\[52\]](https://opencode.ai/docs#:~:text=1) - Oh My OpenCode项目介绍、社区经验分享[\[80\]](https://www.cnblogs.com/treasury-manager/p/19217990#:~:text=OpenCode%20%E4%B8%80%E4%B8%AA%E7%A5%9E%E5%A5%87%E7%9A%84CLI%20%EF%BC%88%E5%8F%AF%E4%BB%A5%E8%9E%8D%E5%90%88Claude%20Code%2C%20iFLow,code%29%20%E2%86%90%20%E8%87%AA%E5%8A%A8%E4%BD%BF%E7%94%A8oracle%20%E7%9A%84%E6%A8%A1%E5%9E%8B%E2%86%93%20%E8%B0%83%E7%94%A8%40explore)[\[81\]](https://github.com/code-yeongyu/oh-my-opencode/blob/dev/README.zh-cn.md#:~:text=oh,%E8%80%81%E5%AE%9E%E8%AF%B4%EF%BC%8C%E7%94%9A%E8%87%B3%E4%B8%8D%E7%94%A8%E8%B4%B9%E5%BF%83%E8%AF%BB%E6%96%87%E6%A1%A3%E3%80%82%E5%8F%AA%E9%9C%80%E5%86%99%E4%BD%A0%E7%9A%84%E6%8F%90%E7%A4%BA%E3%80%82%E5%8C%85%E5%90%AB%27ultrawork%27%20%E5%85%B3%E9%94%AE%E8%AF%8D%E3%80%82Sisyphus%20%E4%BC%9A%E5%88%86%E6%9E%90%E7%BB%93%E6%9E%84%EF%BC%8C%E6%94%B6%E9%9B%86%E4%B8%8A%E4%B8%8B%E6%96%87%EF%BC%8C%E6%8C%96%E6%8E%98%E5%A4%96%E9%83%A8%E6%BA%90%E4%BB%A3%E7%A0%81%EF%BC%8C%E7%84%B6%E5%90%8E%E6%8C%81%E7%BB%AD%E6%8E%A8%E8%BF%9B) - Korbinian Schleifer: _Learning Go and Vue with Claude AI as my Pair Programmer_[\[39\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L316%20Give%20Claude,context%2C%20the%20better%20the%20suggestions)[\[40\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L322%20When%20Claude,things%20you%E2%80%99ve%20already%20decided%20against) - 更多详见上述来源引用[\[8\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=my,%E8%BE%85%E5%8A%A9%E8%84%9A%E6%9C%AC%EF%BC%88%E5%8F%AF%E9%80%89%EF%BC%89)[\[68\]](https://opencode.ai/docs#:~:text=3)等。 [\[1\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=%E4%BB%80%E4%B9%88%E6%98%AF%20Claude%20Skills%EF%BC%9F) [\[7\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=%E6%8A%80%E8%83%BD%E7%BB%93%E6%9E%84%EF%BC%9A) [\[8\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=my,%E8%BE%85%E5%8A%A9%E8%84%9A%E6%9C%AC%EF%BC%88%E5%8F%AF%E9%80%89%EF%BC%89) [\[9\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=%E6%8A%80%E8%83%BD%E5%AE%9A%E4%B9%89%E6%A0%BC%E5%BC%8F) [\[10\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=,%E7%B1%BB%E5%88%AB2) [\[11\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=) [\[12\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=Anthropic%20Claude%20Skills%20%E6%98%AF%E5%8C%85%E5%90%AB%E6%8C%87%E4%BB%A4%E3%80%81%E8%84%9A%E6%9C%AC%E5%92%8C%E8%B5%84%E6%BA%90%E7%9A%84%E6%96%87%E4%BB%B6%E5%A4%B9%EF%BC%8CClaude%20%E5%8A%A8%E6%80%81%E5%8A%A0%E8%BD%BD%E4%BB%A5%E6%8F%90%E9%AB%98%E4%B8%93%E4%B8%9A%E4%BB%BB%E5%8A%A1%E7%9A%84%E6%80%A7%E8%83%BD%E3%80%82) [\[13\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=) [\[16\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=,%E9%A2%84%E7%AE%97%E6%98%8E%E7%BB%86%20%E5%90%AF%E7%94%A8%E4%BF%AE%E8%AE%A2%E8%B7%9F%E8%B8%AA%E4%BB%A5%E4%BE%9B%E5%AE%A1%E6%9F%A5) [\[17\]](https://ide.unitmesh.cc/spec/claude-skill#:~:text=) Claude Skill | AutoDev - Tailor Your AI Coding Experience [\[2\]](https://www.bilibili.com/opus/1132124852115734530#:~:text=Claude%20Skills%20%E6%9C%AC%E8%B4%A8%E4%B8%8A%E6%98%AF%E4%B8%80%E7%A7%8D,) [\[30\]](https://www.bilibili.com/opus/1132124852115734530#:~:text=Claude%20Skills%20%E5%AE%9E%E6%88%98%E6%8C%87%E5%8D%97%EF%BC%9A3%20%E5%88%86%E9%92%9F%E6%90%9E%E5%AE%9APPT%E3%80%81%E6%B5%B7%E6%8A%A5%E4%B8%8ELogo%20,%E5%AE%83%E5%B0%86%E5%B8%B8%E8%A7%81%E7%9A%84%E5%8A%9E%E5%85%AC%E4%BB%BB%E5%8A%A1%28%E5%A6%82Excel%20%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90%E3%80%81PPT%20%E6%BC%94%E7%A4%BA%E7%94%9F%E6%88%90%E3%80%81%E6%96%87%E6%A1%A3%E5%A4%84%E7%90%86%E3%80%81%E5%93%81%E7%89%8C%E8%AE%BE%E8%AE%A1%E7%AD%89%29%E5%B0%81%E8%A3%85%E6%88%90%E5%8F%AF%E5%A4%8D%E7%94%A8%E7%9A%84%E6%8A%80%E8%83%BD%E6%A8%A1%E5%9D%97%E3%80%82%E8%BF%99%E7%A7%8D%E8%AE%BE%E8%AE%A1%E7%90%86%E5%BF%B5%E7%9A%84%E6%A0%B8%E5%BF%83%E4%BC%98%E5%8A%BF) Claude Skills 实战指南:3 分钟搞定PPT、海报与Logo - Bilibili [\[3\]](https://claudecn.com/#:~:text=Agent%20Skills%20%E5%8F%AF%E5%A4%8D%E7%94%A8%E7%9A%84%E6%8A%80%E8%83%BD%E7%B3%BB%E7%BB%9F%EF%BC%8C%E8%AE%A9%20Claude%20%E6%8E%8C%E6%8F%A1%E7%89%B9%E5%AE%9A%E9%A2%86%E5%9F%9F%E4%B8%93%E4%B8%9A%E7%9F%A5%E8%AF%86%E3%80%82%E5%8C%85%E6%8B%AC,%E8%BF%9E%E6%8E%A5%E5%A4%96%E9%83%A8%E5%B7%A5%E5%85%B7%E5%92%8C%E6%95%B0%E6%8D%AE%E6%BA%90%EF%BC%8C%E6%89%A9%E5%B1%95%20Claude%20%E7%9A%84%E8%83%BD%E5%8A%9B%E8%BE%B9%E7%95%8C%EF%BC%8C%E6%9E%84%E5%BB%BA%E5%BC%BA%E5%A4%A7%E7%9A%84%20AI%20%E5%BA%94%E7%94%A8%E7%94%9F%E6%80%81%E3%80%82) Claude 中文 - Claude AI 开发技术社区 [\[4\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=,3.2.2%20Markdown%20%E6%8C%87%E4%BB%A4%E6%AD%A3%E6%96%87) [\[23\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=1) [\[24\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=%E4%B8%BA%E4%BA%86%E9%81%BF%E5%85%8D%E2%80%9C%E4%BB%8B%E7%BB%8D%E5%8A%9F%E8%83%BD%E4%BD%86%E7%BC%BA%E5%B0%91%E5%8F%AF%E6%A3%80%E9%AA%8C%E7%BB%93%E8%AE%BA%E2%80%9D%EF%BC%8C%E6%9C%AC%E6%96%87%E5%85%88%E6%8A%8A%20Skills%20%E7%9A%84%E6%9E%B6%E6%9E%84%E4%BB%B7%E5%80%BC%E6%94%B6%E6%95%9B%E6%88%90%E4%B8%80%E5%8F%A5%E5%8F%AF%E9%AA%8C%E8%AF%81%E7%9A%84%E5%91%BD%E9%A2%98%EF%BC%9A) [\[25\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=Skills%20%E6%8A%8A%20LLM%20%E7%B3%BB%E7%BB%9F%E4%BB%8E%E2%80%9C%E6%96%87%E6%9C%AC%E5%A0%86%E5%8F%A0%E7%9A%84%E5%8D%95%E4%BD%93%E6%8F%90%E7%A4%BA%E8%AF%8D%E2%80%9D%EF%BC%8C%E9%87%8D%E6%9E%84%E4%B8%BA%E2%80%9C%E5%8F%AF%E7%89%88%E6%9C%AC%E5%8C%96%E3%80%81%E5%8F%AF%E5%AE%A1%E8%AE%A1%E3%80%81%E5%8F%AF%E7%BB%84%E5%90%88%E7%9A%84%E8%BF%90%E8%A1%8C%E6%97%B6%E6%A8%A1%E5%9D%97%E2%80%9D%EF%BC%9B%E6%A0%B8%E5%BF%83%E6%94%B6%E7%9B%8A%E6%9D%A5%E8%87%AA%E4%B8%89%E4%BB%B6%E4%BA%8B%EF%BC%9A%E4%B8%8A%E4%B8%8B%E6%96%87%E9%A2%84%E7%AE%97%E5%8F%AF%E6%8E%A7%E3%80%81%E6%89%A7%E8%A1%8C%E8%B7%AF%E5%BE%84%E5%8F%AF%E6%8E%A7%E3%80%81%E6%9D%83%E9%99%90%E8%BE%B9%E7%95%8C%E5%8F%AF%E6%8E%A7%E3%80%82) [\[26\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=,3.%20%E6%8A%80%E6%9C%AF%E8%A7%A3%E6%9E%84%EF%BC%9ASkill%20%E7%9A%84%E7%89%A9%E7%90%86%E5%BD%A2%E6%80%81%E4%B8%8E%E8%A7%84%E8%8C%83) [\[27\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=,2.3%20%E6%8A%8A%E2%80%9C%E5%88%86%E5%B1%82%E6%8A%AB%E9%9C%B2%E2%80%9D%E6%8F%90%E5%8D%87%E4%B8%BA%E8%BF%90%E8%A1%8C%E6%97%B6%E7%8A%B6%E6%80%81%E6%9C%BA) [\[28\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=,%E6%9D%83%E9%99%90%E8%BE%B9%E7%95%8C%E5%8F%AF%E6%8E%A7%EF%BC%9A%E7%94%A8%E6%B2%99%E7%AE%B1%E3%80%81%E7%BD%91%E7%BB%9C%E4%BB%A3%E7%90%86%E4%B8%8E%E6%9D%83%E9%99%90%E6%8F%90%E7%A4%BA%EF%BC%8C%E6%8A%8A%E5%B7%A5%E5%85%B7%E6%89%A7%E8%A1%8C%E9%9D%A2%E6%94%B6%E6%95%9B%E5%88%B0%E5%8F%AF%E5%AE%A1%E8%AE%A1%E3%80%81%E5%8F%AF%E6%B2%BB%E7%90%86%E7%9A%84%E8%BE%B9%E7%95%8C%E5%86%85%E3%80%82) [\[29\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=%2A%204.1%20%E7%9B%91%E7%9D%A3%E8%80%85,6.2%20%E5%8D%8F%E5%90%8C%E6%9E%B6%E6%9E%84%EF%BC%9ASkill%20%E4%BD%9C%E4%B8%BA%E7%BC%96%E6%8E%92%E8%80%85) [\[86\]](https://claudecn.com/blog/claude-skills-architecture/#:~:text=%E4%B8%BA%E4%BA%86%E9%81%BF%E5%85%8D%E2%80%9C%E4%BB%8B%E7%BB%8D%E5%8A%9F%E8%83%BD%E4%BD%86%E7%BC%BA%E5%B0%91%E5%8F%AF%E6%A3%80%E9%AA%8C%E7%BB%93%E8%AE%BA%E2%80%9D%EF%BC%8C%E6%9C%AC%E6%96%87%E5%85%88%E6%8A%8A%20Skills%20%E7%9A%84%E6%9E%B6%E6%9E%84%E4%BB%B7%E5%80%BC%E6%94%B6%E6%95%9B%E6%88%90%E4%B8%80%E5%8F%A5%E5%8F%AF%E9%AA%8C%E8%AF%81%E7%9A%84%E5%91%BD%E9%A2%98%EF%BC%9A) Claude Skills 架构拆解:渐进披露、运行时与安全沙箱 - Claude 中文 - Claude AI 开发技术社区 [\[5\]](https://cloud.tencent.com/developer/article/2616585#:~:text=Claude%20Skills%E6%98%AFAnthropic%E6%8E%A8%E5%87%BA%E7%9A%84AI%E5%8A%9F%E8%83%BD%E9%9D%A9%E5%91%BD%EF%BC%8C%E5%8F%AF%E5%B0%86%E7%94%A8%E6%88%B7%E4%BD%BF%E7%94%A8AI%E7%9A%84%E4%B9%A0%E6%83%AF%E6%96%87%E4%BB%B6%E5%8C%96%E7%AE%A1%E7%90%86%E3%80%82%E5%AE%83%E8%83%BD%E8%A7%A3%E5%86%B3Claude%E5%81%A5%E5%BF%98%E3%80%81%E9%9C%80%E9%87%8D%E5%A4%8D%E6%8F%90%E7%A4%BA%E8%AF%8D%E7%9A%84%E9%97%AE%E9%A2%98%EF%BC%8C%E5%B0%86%E4%BB%BB%E5%8A%A1%E8%AF%B4%E6%98%8E%E3%80%81%E5%B7%A5%E5%85%B7%E4%BB%A3%E7%A0%81%E7%AD%89%E6%89%93%E5%8C%85%E6%88%90%20) 最近很火爆的Claude Skills到底是个啥?解决什么问题?怎么用! [\[6\]](https://www.facebook.com/iamvista/photos/%E6%9F%90%E5%A4%A9%E6%B7%B1%E5%A4%9C%E6%88%91%E6%AD%A3%E5%9C%A8%E8%B6%95%E4%B8%80%E4%BB%BD%E6%96%87%E4%BB%B6%E5%A4%A9%E5%95%8A%E5%90%8C%E6%A8%A3%E7%9A%84%E6%9E%B6%E6%A7%8B%E5%90%8C%E6%A8%A3%E7%9A%84%E8%AA%9E%E6%B0%A3%E5%90%8C%E6%A8%A3%E7%9A%84%E6%A0%BC%E5%BC%8F%E8%A6%81%E6%B1%82%E4%BD%86%E6%88%91%E5%8F%88%E5%BE%97%E9%87%8D%E6%96%B0%E6%89%93%E4%B8%80%E6%AC%A1%E8%AB%8B%E7%94%A8%E9%80%99%E5%80%8B%E6%A0%BC%E5%BC%8F%E8%AB%8B%E5%85%88%E5%95%8F%E4%B8%89%E5%80%8B%E6%BE%84%E6%B8%85%E5%95%8F%E9%A1%8C%E8%AB%8B%E6%8A%8A%E8%BC%B8%E5%87%BA%E5%88%86%E6%88%90%E5%9B%9B%E6%AE%B5%E8%AB%8B%E9%99%84%E4%B8%8A%E5%8F%AF%E7%9B%B4%E6%8E%A5%E8%B2%BC%E5%88%B0-notion-%E7%9A%84/10162293093624053/#:~:text=,%E6%88%91%E6%80%8E%E9%BA%BC%E5%81%9A%E4%B8%80%E5%80%8B%E5%A5%BDskill%EF%BC%8C%E8%AE%8A%E6%88%90skill) 請先問三個澄清問題、請把輸出分成四段、請附上可直接貼到Notion ... [\[14\]](https://github.com/wensia/xiaohongshu-poster-generator#:~:text=wensia%2Fxiaohongshu,Code%20%2B%20MCP%20%E7%9A%84%E5%B0%8F%E7%BA%A2%E4%B9%A6%E6%98%9F%E5%BA%A7%E5%86%85%E5%AE%B9%E8%87%AA%E5%8A%A8%E5%8C%96%E5%B7%A5%E4%BD%9C%E6%B5%81%EF%BC%8C%E6%94%AF%E6%8C%81%E6%B5%B7%E6%8A%A5%E7%94%9F%E6%88%90%E3%80%81%E7%88%86%E6%96%87%E5%88%86%E6%9E%90%E3%80%81%E5%86%85%E5%AE%B9%E5%8F%91%E5%B8%83%E7%AD%89%E5%8A%9F%E8%83%BD%E3%80%82%20%E5%8A%9F%E8%83%BD%E7%89%B9%E6%80%A7) wensia/xiaohongshu-poster-generator: 小红书星座海报生成器 - GitHub [\[15\]](https://blog.csdn.net/yangshangwei/article/details/156836796#:~:text=%E4%B8%80%E4%B8%AA%E5%8F%AF%E8%90%BD%E5%9C%B0%E7%9A%84%E4%B8%89%E6%AD%A5%E6%B3%95,3%20%E7%AC%AC%E4%B8%89%E6%AD%A5%EF%BC%9A%E6%8A%8AClaude%20%E5%BD%93%E2%80%9C%E6%90%AD%E5%AD%90%E2%80%9D%EF%BC%8C%E8%80%8C%E4%B8%8D%E6%98%AF%E6%90%9C%E7%B4%A2%E6%A1%86) LLM - 从Prompt 到Skills_skills 市场 - CSDN博客 [\[18\]](https://hbwdj.gov.cn/appbdetail-imqqsmrp9897358.d#:~:text=%E9%AA%97%E4%BD%A0%E7%9A%84%EF%BC%8C%E5%85%B6%E5%AE%9EAI%E6%A0%B9%E6%9C%AC%E4%B8%8D%E9%9C%80%E8%A6%81%E9%82%A3%E4%B9%88%E5%A4%9A%E6%8F%90%E7%A4%BA%E8%AF%8D%E3%80%82%20%E4%BD%A0%E5%8F%AA%E9%9C%80%E8%A6%81%E8%B0%83%E7%94%A8AI%20%E6%9C%AC%E8%BA%AB%E7%9A%84%E2%80%9CSkill%20Creator%E2%80%9D%E6%8A%80%E8%83%BD%EF%BC%8C%E7%94%A8%E4%BD%A0%E7%9A%84%E8%AF%AD%E8%A8%80%E6%8F%8F%E8%BF%B0%E8%87%AA%E5%B7%B1%E7%9A%84%E9%9C%80%E6%B1%82%EF%BC%8C%E8%AE%A9AI%E8%87%AA%E5%8A%A8%E5%B8%AE%E4%BD%A0%E7%94%9F%E6%88%90%E4%B8%80%E9%97%A8%E6%8A%80%E8%83%BD%EF%BC%8C%E4%BD%BF%E7%94%A8%E8%B5%B7%E6%9D%A5%E9%9D%9E%E5%B8%B8%E5%8F%8B%E5%A5%BD%EF%BC%8CAI%E4%BC%9A%E4%B8%80%E6%AD%A5%E6%AD%A5%E5%BC%95%E5%AF%BC%E4%BD%A0%E8%AF%B4%E5%87%BA%E4%BD%A0%E7%9A%84%E9%9C%80%E6%B1%82%EF%BC%8C%E4%BD%A0%E5%8F%AA%20) 骗你的,其实AI根本不需要那么多提示词。 [\[19\]](https://lilys.ai/zh/notes/claude-code-20251031/claude-code-skills-automate-everything#:~:text=%E6%83%B3%20%E8%87%AA%E5%8A%A8%E5%8C%96%E4%BD%A0%E6%89%80%E5%81%9A%E7%9A%84%E4%B8%80%E5%88%87%20%E5%90%97%EF%BC%9F%E5%AD%A6%E4%B9%A0%E5%A6%82%E4%BD%95%E5%88%A9%E7%94%A8%20%E5%85%8B%E5%8A%B3%E5%BE%B7%C2%B7%E7%A7%91%E5%BE%B7%E6%8A%80%E8%83%BD%20%E5%88%9B%E5%BB%BA%E8%87%AA%E5%AE%9A%E4%B9%89%E5%B7%A5%E4%BD%9C%E6%B5%81%E3%80%82%E6%9C%AC%E5%86%85%E5%AE%B9%E6%8F%AD%E7%A4%BA%E4%BA%86,%E5%85%AD%E6%AD%A5MASTER%E6%A1%86%E6%9E%B6%EF%BC%8C%E6%95%99%E4%BD%A0%E5%A6%82%E4%BD%95%E9%80%9A%E8%BF%87%20%E8%BF%AD%E4%BB%A3%E5%8F%8D%E9%A6%88%20%E8%AE%AD%E7%BB%83AI%E3%80%82%E6%8E%8C%E6%8F%A1%E6%AD%A4%E6%96%B9%E6%B3%95%EF%BC%8C%E4%BD%A0%E5%B0%B1%E8%83%BD%E5%B0%86%E9%87%8D%E5%A4%8D%E4%BB%BB%E5%8A%A1%E8%BD%AC%E5%8C%96%E4%B8%BA%E9%AB%98%E6%95%88%E7%9A%84%20%E7%B3%BB%E7%BB%9F%E5%8C%96%E6%8A%80%E8%83%BD%EF%BC%8C%E5%AE%9E%E7%8E%B0%E5%B7%A5%E4%BD%9C%E6%95%88%E7%8E%87%E7%9A%84%E6%8C%87%E6%95%B0%E7%BA%A7%E6%8F%90%E5%8D%87%E3%80%82) [\[20\]](https://lilys.ai/zh/notes/claude-code-20251031/claude-code-skills-automate-everything#:~:text=4.%20MASTER%E6%A1%86%E6%9E%B6%EF%BC%9A%E7%AC%AC%E4%BA%8C%E9%98%B6%E6%AE%B5%E2%80%94%E2%80%94%E7%B3%BB%E7%BB%9F%E5%8C%96%E4%B8%BA%E6%8A%80%E8%83%BD%20) [\[21\]](https://lilys.ai/zh/notes/claude-code-20251031/claude-code-skills-automate-everything#:~:text=1.%20%E7%B3%BB%E7%BB%9F%E5%8C%96%E7%9B%AE%E6%A0%87%EF%BC%9A%E5%B0%86%E5%AD%A6%E5%88%B0%E7%9A%84%E6%89%80%E6%9C%89%E5%85%B3%E9%94%AE%E7%BB%8F%E9%AA%8C%E6%95%99%E8%AE%AD%E8%BD%AC%E5%8C%96%E4%B8%BA%20%E7%B3%BB%E7%BB%9F%E5%8C%96%E6%8A%80%E8%83%BD%E3%80%82,48) [\[22\]](https://lilys.ai/zh/notes/claude-code-20251031/claude-code-skills-automate-everything#:~:text=match%20at%20L3327%205,57) 克劳德代码技能:自动化你的所有操作 [\[31\]](https://lilys.ai/zh/notes/claude-skills-20251022/no-code-ai-workflow-claude-skills#:~:text=Skill%20%E5%9F%BA%E7%A1%80%E7%BB%93%E6%9E%84%EF%BC%9A%E6%9C%80%E7%AE%80%E5%8D%95%E6%83%85%E5%86%B5%E4%B8%8B%EF%BC%8CSkill%20%E6%98%AF%E4%B8%80%E4%B8%AA%E5%8C%85%E5%90%ABSkill%20Markdown%20%E6%96%87%E4%BB%B6%E7%9A%84%E7%9B%AE%E5%BD%95,36%5D) 无需编写代码也能定制AI 工作流?Claude Skills 让你的AI 更懂你 [\[32\]](https://github.com/0xfnzero/AI-Code-Tutorials#:~:text=%E4%BB%8E%E9%9B%B6%E5%9F%BA%E7%A1%80%E5%88%B0%E9%AB%98%E7%BA%A7%E5%BA%94%E7%94%A8%EF%BC%8C%E7%B3%BB%E7%BB%9F%E5%AD%A6%E4%B9%A0Claude%20Code%EF%BC%8C%E6%8E%8C%E6%8F%A1AI%20%E8%BE%85%E5%8A%A9%E7%BC%96%E7%A8%8B%E6%8A%80%E8%83%BD%EF%BC%8C%E6%8F%90%E5%8D%87%E5%BC%80%E5%8F%91%E6%95%88%E7%8E%8710%20%E5%80%8D%20,md%E3%80%81%E5%B7%A5%E5%85%B7%E6%9D%83%E9%99%90%E3%80%81gh%20CLI%EF%BC%89%3B%20%E7%BB%99Claude%20%E6%9B%B4%E5%A4%9A%E5%B7%A5%E5%85%B7%EF%BC%88bash%E3%80%81MCP) 0xfnzero/AI-Code-Tutorials: 从零基础到高级应用,系统学习Claude ... [\[33\]](https://news.qq.com/rain/a/20260107A02N2N00#:~:text=Skills%20%E5%B0%B1%E6%98%AF%E7%BB%99Claude%20%E7%9A%84) 给AI装个技能包:Skills是什么-腾讯新闻 - QQ [\[34\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L93%20,side%20rendering%20and) [\[35\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L96%20,No%20magic%2C%20no) [\[36\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=,No%20magic%2C%20no) [\[37\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=,No%20magic%2C%20no) [\[38\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=Claude%20can%20describe%20architecture%20well%2C,com%20which%20I%20then) [\[39\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L316%20Give%20Claude,context%2C%20the%20better%20the%20suggestions) [\[40\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L322%20When%20Claude,things%20you%E2%80%99ve%20already%20decided%20against) [\[42\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=After%20long%20chats%2C%20Claude%20noticeably,you%20have%20done%20so%20far) [\[45\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=if%20err%20%3A%3D%20godotenv,) [\[46\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=match%20at%20L236%20This%20is,JavaScript%20pretending%20to%20be%20HTML) [\[47\]](https://medium.com/comsystoreply/learning-go-and-vue-with-claude-ai-as-my-pair-programmer-b2d634e291eb#:~:text=3,getting%20lost%20in%20tutorial%20hell) Learning Go and Vue with Claude AI as my Pair Programmer | comsystoreply [\[41\]](https://www.cnblogs.com/treasury-manager/p/19217990#:~:text=OpenCode%20%E4%B8%80%E4%B8%AA%E7%A5%9E%E5%A5%87%E7%9A%84CLI%20%EF%BC%88%E5%8F%AF%E4%BB%A5%E8%9E%8D%E5%90%88Claude%20Code%2C%20iFLow,code%29%20%E2%86%90%20%E8%87%AA%E5%8A%A8%E4%BD%BF%E7%94%A8oracle%20%E7%9A%84%E6%A8%A1%E5%9E%8B%E2%86%93%20%E8%B0%83%E7%94%A8%40explore) [\[80\]](https://www.cnblogs.com/treasury-manager/p/19217990#:~:text=OpenCode%20%E4%B8%80%E4%B8%AA%E7%A5%9E%E5%A5%87%E7%9A%84CLI%20%EF%BC%88%E5%8F%AF%E4%BB%A5%E8%9E%8D%E5%90%88Claude%20Code%2C%20iFLow,code%29%20%E2%86%90%20%E8%87%AA%E5%8A%A8%E4%BD%BF%E7%94%A8oracle%20%E7%9A%84%E6%A8%A1%E5%9E%8B%E2%86%93%20%E8%B0%83%E7%94%A8%40explore) OpenCode 一个神奇的CLI (可以融合Claude Code, iFLow ... - 博客园 [\[43\]](https://opencode.ai/docs#:~:text=%2Finit) [\[44\]](https://opencode.ai/docs#:~:text=You%20can%20ask%20OpenCode%20to,explain%20the%20codebase%20to%20you) [\[52\]](https://opencode.ai/docs#:~:text=1) [\[53\]](https://opencode.ai/docs#:~:text=OpenCode%20is%20an%20open%20source,desktop%20app%2C%20or%20IDE%20extension) [\[58\]](https://opencode.ai/docs#:~:text=Configure) [\[59\]](https://opencode.ai/docs#:~:text=If%20you%20are%20new%20to,verified%20by%20the%20OpenCode%20team) [\[60\]](https://opencode.ai/docs#:~:text=Next%2C%20initialize%20OpenCode%20for%20the,by%20running%20the%20following%20command) [\[61\]](https://opencode.ai/docs#:~:text=This%20will%20get%20OpenCode%20to,file%20in%20the%20project%20root) [\[62\]](https://opencode.ai/docs#:~:text=Make%20changes) [\[63\]](https://opencode.ai/docs#:~:text=1) [\[64\]](https://opencode.ai/docs#:~:text=Now%20let%E2%80%99s%20describe%20what%20we,want%20it%20to%20do) [\[66\]](https://opencode.ai/docs#:~:text=2) [\[67\]](https://opencode.ai/docs#:~:text=2) [\[68\]](https://opencode.ai/docs#:~:text=3) [\[69\]](https://opencode.ai/docs#:~:text=Once%20you%20feel%20comfortable%20with,hitting%20the%20Tab%20key%20again) [\[70\]](https://opencode.ai/docs#:~:text=Tip) [\[71\]](https://opencode.ai/docs#:~:text=Let%E2%80%99s%20say%20you%20ask%20OpenCode,to%20make%20some%20changes) [\[72\]](https://opencode.ai/docs#:~:text=Share) [\[73\]](https://opencode.ai/docs#:~:text=You%20want%20to%20give%20OpenCode,junior%20developer%20on%20your%20team) [\[74\]](https://opencode.ai/docs#:~:text=We%20need%20to%20add%20authentication,look%20at%20how%20this%20is) [\[75\]](https://opencode.ai/docs#:~:text=without%20having%20to%20review%20the,plan%20first) Intro | OpenCode [\[48\]](https://zhuanlan.zhihu.com/p/1991170184573122515#:~:text=OpenCode%20%E6%98%AF%E4%B8%80%E4%B8%AAAI%20%E7%BC%96%E7%A8%8B%E5%8A%A9%E6%89%8B%EF%BC%8C%E8%B7%91%E5%9C%A8%E4%BD%A0%E7%9A%84%E7%BB%88%E7%AB%AF%E9%87%8C%EF%BC%88%E5%B0%B1%E6%98%AF%E9%82%A3%E4%B8%AA%E9%BB%91%E8%89%B2%E7%AA%97%E5%8F%A3%EF%BC%89%E3%80%82%20%E4%BD%A0%E8%B7%9F%E5%AE%83%E8%AF%B4%E8%AF%9D%EF%BC%8C%E5%AE%83%E5%B0%B1%E5%B8%AE%E4%BD%A0%E5%86%99%E4%BB%A3%E7%A0%81%E3%80%82%20,%E2%86%92%20%E5%AE%83%E6%94%B9) OpenCode + Oh My OpenCode 一份老奶奶都能看懂的AI 编程指南 [\[49\]](https://github.com/anomalyco/opencode#:~:text=close%20and%20pricing%20will%20drop,what%27s%20possible%20in%20the%20terminal) [\[51\]](https://github.com/anomalyco/opencode#:~:text=OpenCode%20includes%20two%20built,key) [\[54\]](https://github.com/anomalyco/opencode#:~:text=%2A%20100,what%27s%20possible%20in%20the%20terminal) [\[55\]](https://github.com/anomalyco/opencode#:~:text=%2A%20100,push%20the%20limits%20of%20what%27s) [\[56\]](https://github.com/anomalyco/opencode#:~:text=Installation) [\[57\]](https://github.com/anomalyco/opencode#:~:text=npm%20i%20,Any%20OS) [\[65\]](https://github.com/anomalyco/opencode#:~:text=%2A%20build%20,unfamiliar%20codebases%20or%20planning%20changes) GitHub - anomalyco/opencode: The open source coding agent. [\[50\]](https://cloud.tencent.com/developer/article/2574516#:~:text=Claude%20Code%E4%BB%A3%E7%A0%81%E8%A7%84%E8%8C%83%E5%AE%88%E6%8A%A4%E8%80%85%E5%AD%90%E4%BB%A3%E7%90%86%E5%AE%9E%E6%88%98%E6%8C%87%E5%8D%97%20,Code%E4%BB%A3%E7%A0%81%E8%A7%84%E8%8C%83%E5%AD%90%E4%BB%A3%E7%90%86%E6%98%AFAI%E9%A9%B1%E5%8A%A8%E7%9A%84%E4%BB%A3%E7%A0%81%E8%B4%A8%E9%87%8F%E7%AE%A1%E5%AE%B6%EF%BC%8C%E8%83%BD%E8%87%AA%E5%8A%A8%E7%BB%9F%E4%B8%80%E5%9B%A2%E9%98%9F%E4%BB%A3%E7%A0%81%E9%A3%8E%E6%A0%BC%E3%80%81%E6%89%A7%E8%A1%8C%E5%91%BD%E5%90%8D%E8%A7%84%E8%8C%83%E3%80%81%E6%A3%80%E6%9F%A5%E6%B5%8B%E8%AF%95%E8%A6%86%E7%9B%96%E7%8E%87%E3%80%82%E9%80%9A%E8%BF%87ESLint%E3%80%81Prettier%E7%AD%89%E5%B7%A5%E5%85%B7%E9%85%8D%E7%BD%AE%EF%BC%8C) Claude Code代码规范守护者子代理实战指南 - 腾讯云 [\[76\]](https://blog.csdn.net/u012094427/article/details/148866474#:~:text=%E4%BB%8A%E5%A4%A9%E6%88%91%E4%BB%AC%E8%A6%81%E8%81%8A%E7%9A%84%E7%A1%AC%E6%A0%B8%E8%AF%9D%E9%A2%98%EF%BC%8C%E6%98%AF%E4%B8%AA%E8%AE%A9%E6%9E%81%E5%AE%A2%E4%BB%AC%E9%A2%A4%E6%8A%96%E3%80%81%E8%AE%A9%E7%A8%8B%E5%BA%8F%E5%91%98%E4%BB%AC%E5%B0%96%E5%8F%AB%EF%BC%8C%E8%AE%A9%E5%86%99%E4%BB%A3%E7%A0%81%E7%88%BD%E5%88%B0%E9%A3%9E%E8%B5%B7%E7%9A%84%E5%AD%98%E5%9C%A8%E2%80%94%E2%80%94OpenCode%EF%BC%8C%E5%BC%80%E6%BA%90AI%E7%BB%88%E7%AB%AF%E7%BC%96%E7%A0%81%E5%8A%A9%E6%89%8B%E3%80%82%20%E5%9C%A8AI%E5%85%A8%E8%83%BD%E5%86%99%E4%BB%A3%E7%A0%81%E3%80%81Copilot%E5%AE%B6%E5%A4%A7%E4%B8%9A%E5%A4%A7%E3%80%81%20) 【爆款长文】终端里的AI编程老司机--全面解读OpenCode! 原创 [\[77\]](https://x.com/Nateemerson/status/2002043382953288046/photo/1#:~:text=YeonGyu,and%20practices%20for%20agentic%20coding) YeonGyu-Kim built Oh My Opencode (OmO), an OC plugin ... [\[78\]](https://github.com/code-yeongyu/oh-my-opencode#:~:text=The%20Best%20Agent%20Harness,Agent%20that%20codes%20like%20you) GitHub - code-yeongyu/oh-my-opencode: The Best Agent Harness. Meet Sisyphus: The Batteries-Included Agent that codes like you. [\[79\]](https://post.smzdm.com/p/aog8xq7m#:~:text=%E4%B8%80%E4%BA%BA%E6%8A%B5%E4%B8%80%E4%B8%AA%E5%BC%80%E5%8F%91%E5%9B%A2%E9%98%9F%E7%9A%84AI%E7%BC%96%E7%A8%8B%E7%A5%9E%E5%99%A8%E5%AE%8C%E5%85%A8%E6%8C%87%E5%8D%97%20,%E5%9C%A8%E6%88%90%E6%9C%AC%E6%8E%A7%E5%88%B6%E6%96%B9%E9%9D%A2%EF%BC%8C%E8%AF%A5%E7%B3%BB%E7%BB%9F%E6%94%AF%E6%8C%81%E5%A4%9A%E6%A8%A1%E5%9E%8B%E6%B7%B7%E5%90%88%E4%BD%BF%E7%94%A8%E7%AD%96%E7%95%A5%E3%80%82%E9%80%9A%E8%BF%87%E9%85%8D%E7%BD%AE%EF%BC%8C%E5%8F%AF%E4%BB%A5%E5%B0%86) [\[85\]](https://post.smzdm.com/p/aog8xq7m#:~:text=%E5%9C%A8%E6%88%90%E6%9C%AC%E6%8E%A7%E5%88%B6%E6%96%B9%E9%9D%A2%EF%BC%8C%E8%AF%A5%E7%B3%BB%E7%BB%9F%E6%94%AF%E6%8C%81%E5%A4%9A%E6%A8%A1%E5%9E%8B%E6%B7%B7%E5%90%88%E4%BD%BF%E7%94%A8%E7%AD%96%E7%95%A5%E3%80%82%E9%80%9A%E8%BF%87%E9%85%8D%E7%BD%AE%EF%BC%8C%E5%8F%AF%E4%BB%A5%E5%B0%86%20) 一人抵一个开发团队的AI编程神器完全指南 - 什么值得买 [\[81\]](https://github.com/code-yeongyu/oh-my-opencode/blob/dev/README.zh-cn.md#:~:text=oh,%E8%80%81%E5%AE%9E%E8%AF%B4%EF%BC%8C%E7%94%9A%E8%87%B3%E4%B8%8D%E7%94%A8%E8%B4%B9%E5%BF%83%E8%AF%BB%E6%96%87%E6%A1%A3%E3%80%82%E5%8F%AA%E9%9C%80%E5%86%99%E4%BD%A0%E7%9A%84%E6%8F%90%E7%A4%BA%E3%80%82%E5%8C%85%E5%90%AB%27ultrawork%27%20%E5%85%B3%E9%94%AE%E8%AF%8D%E3%80%82Sisyphus%20%E4%BC%9A%E5%88%86%E6%9E%90%E7%BB%93%E6%9E%84%EF%BC%8C%E6%94%B6%E9%9B%86%E4%B8%8A%E4%B8%8B%E6%96%87%EF%BC%8C%E6%8C%96%E6%8E%98%E5%A4%96%E9%83%A8%E6%BA%90%E4%BB%A3%E7%A0%81%EF%BC%8C%E7%84%B6%E5%90%8E%E6%8C%81%E7%BB%AD%E6%8E%A8%E8%BF%9B) oh-my-opencode/README.zh-cn.md at dev - GitHub [\[82\]](https://www.youtube.com/watch?v=twFjLiy2Pmc#:~:text=%E8%A7%86%E9%A2%91%E7%AE%80%E4%BB%8B%EF%BC%9A%20%E6%9C%AC%E6%9C%9F%E8%A7%86%E9%A2%91%E8%AF%A6%E7%BB%86%E6%BC%94%E7%A4%BA%E4%BA%86%E5%A6%82%E4%BD%95%E5%9C%A8Opencode%E4%B8%AD%E4%BD%BF%E7%94%A8%E6%9C%80%E5%BC%BA%E5%BC%80%E6%BA%90%E6%8F%92%E4%BB%B6Oh%20My%20Opencode%EF%BC%88OMO%EF%BC%89%EF%BC%8C%E5%B0%86%E5%8D%95%E4%B8%80AI%E7%BC%96%E7%A8%8B%E5%8A%A9%E6%89%8B%E5%8D%87%E7%BA%A7%E4%B8%BA%E5%A4%9A%E6%A8%A1%E5%9E%8B%E5%8D%8F%E4%BD%9C%E7%9A%84AI%E5%BC%80%E5%8F%91%E5%9B%A2%E9%98%9F%EF%BC%81) Sisyphus智能体指挥多AI协作,复杂项目开发效率倍增!全程零干预 ... [\[83\]](https://x.com/AISuperDomain/status/2009823408301994209#:~:text=OpenCode%E7%9A%84%E6%9C%80%E5%BC%BA%E5%BC%80%E6%BA%90%E6%8F%92%E4%BB%B6oh%20my%20opencode%E7%A1%AE%E5%AE%9E%E9%9D%9E%E5%B8%B8%E5%A5%BD%E7%94%A8%20%E8%A7%86%E9%A2%91%E7%AE%80%E4%BB%8B%EF%BC%9A%20%E6%9C%AC%E6%9C%9F%E8%A7%86%E9%A2%91%E8%AF%A6%E7%BB%86%E6%BC%94%E7%A4%BA%E4%BA%86%E5%A6%82%E4%BD%95%E5%9C%A8Opencode%E4%B8%AD%E4%BD%BF%E7%94%A8%E6%9C%80%E5%BC%BA%E5%BC%80%E6%BA%90%E6%8F%92%E4%BB%B6Oh,My%20Opencode%EF%BC%88OMO%EF%BC%89%EF%BC%8C%E5%B0%86%E5%8D%95%E4%B8%80AI%E7%BC%96%E7%A8%8B%E5%8A%A9%E6%89%8B%E5%8D%87%E7%BA%A7%E4%B8%BA%E5%A4%9A%E6%A8%A1%E5%9E%8B%E5%8D%8F%E4%BD%9C%E7%9A%84AI%E5%BC%80%E5%8F%91%E5%9B%A2%E9%98%9F%EF%BC%81%20%E6%A0%B8%E5%BF%83%E5%86%85%E5%AE%B9%EF%BC%9AOMO%E6%8F%92%E4%BB%B6) OpenCode的最强开源插件oh my opencode确实非常好用 [\[84\]](https://blog.csdn.net/gitblog_00895/article/details/144862506#:~:text=oh,) oh-my-opencode高级用法:自定义钩子和插件系统详解 - CSDN博客