
Contents
1 SQL����������������� 2

1.1 �� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 ������� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 �������� (DDL) - ��������� 3
2.1 1.1 CREATE - ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 ����� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 ����� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 ���� - ��������� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.4 ���� - ������� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 1.2 ALTER - ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 1.3 DROP - ���� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 1.4 TRUNCATE - ����� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 �������� (DML) - ��������� 5
3.1 2.1 INSERT - ����� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.2 ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 2.2 UPDATE - ����� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2.1 ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2.2 ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 2.3 DELETE - ����� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.1 ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.2 ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 �������� (TCL) - ��������� 8
4.1 3.1 ACID������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 3.2 ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2.1 ������� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2.2 ����Savepoint�- ������� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 3.3 ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3.1 ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.4 3.4 ������������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4.1 ��1��������� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4.2 ��2������� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 �������� (DQL) - SELECT������ 11
5.1 4.1 SQL������ - ����� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 4.2 FROM�� - ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.2.1 ����� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 4.3 JOIN�� - ������� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3.1 JOIN���� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3.2 ��� - ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.4 4.4 WHERE�� - ������� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4.1 ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4.2 ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.5 4.5 GROUP BY����� - ������� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.5.1 ������� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.5.2 HAVING�� - ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.6 4.6 ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.6.1 ���� - ������� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.6.2 ������ (CTE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.6.3 ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.7 4.7 ���� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.8 4.8 ORDER BY�LIMIT - �������� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.9 � ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.9.1 ������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.9.2 ���� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1



6 �� 19

1 SQL�����������������
1.1 ��
����SQL�������������SQL����SQL��������������������������������������������SQL������

1.2 �������
�������������������������������������������������
erDiagram

USERS ||--o{ ENROLLMENTS : "enrolls"
COURSES ||--o{ ENROLLMENTS : "enrolled_in"
COURSES ||--o{ LESSONS : "contains"
USERS ||--o{ USER_PROGRESS : "tracks"
LESSONS ||--o{ USER_PROGRESS : "progressed_in"
CATEGORIES ||--o{ COURSES : "categorizes"

USERS {
int user_id PK
varchar name
varchar email
date birth_date
enum gender
datetime created_at
datetime updated_at
boolean is_active

}

CATEGORIES {
int category_id PK
varchar name
text description
datetime created_at

}

COURSES {
int course_id PK
varchar title
text description
int category_id FK
decimal price
int duration_hours
enum difficulty_level
datetime created_at
boolean is_published

}

LESSONS {
int lesson_id PK
int course_id FK
varchar title
text content
int duration_minutes
int sequence_number
datetime created_at

}

2



ENROLLMENTS {
int enrollment_id PK
int user_id FK
int course_id FK
datetime enrollment_date
decimal amount_paid
enum status

}

USER_PROGRESS {
int progress_id PK
int user_id FK
int lesson_id FK
datetime completed_at
int time_spent_minutes

}

2 �������� (DDL) - ���������
�����DDL����������������”��”�”��”����CREATE�ALTER�DROP���������������

2.1 1.1 CREATE - ������
2.1.1 �����

-- ����������������
CREATE DATABASE online_education_platform
CHARACTER SET utf8mb4
COLLATE utf8mb4_unicode_ci;

2.1.2 �����

-- 1. ��� - �����������
CREATE TABLE users (

user_id INTEGER PRIMARY KEY AUTOINCREMENT, -- �������
name VARCHAR(100) NOT NULL, -- ����
email VARCHAR(255) NOT NULL UNIQUE, -- ����
birth_date DATE, -- ���
gender ENUM('male', 'female', 'other') DEFAULT 'other', -- ����
created_at DATETIME DEFAULT CURRENT_TIMESTAMP, -- ������
updated_at DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
is_active BOOLEAN DEFAULT true,

-- ����
CONSTRAINT chk_age CHECK (birth_date <= date('now', '-13 years')), -- �������13�
INDEX idx_email (email), -- ����
INDEX idx_created_at (created_at)

);

-- 2. �����
CREATE TABLE categories (

category_id INTEGER PRIMARY KEY AUTOINCREMENT,
name VARCHAR(50) NOT NULL UNIQUE,
description TEXT,
created_at DATETIME DEFAULT CURRENT_TIMESTAMP

);

3



-- 3. ��� - ������
CREATE TABLE courses (

course_id INTEGER PRIMARY KEY AUTOINCREMENT,
title VARCHAR(200) NOT NULL,
description TEXT,
category_id INTEGER NOT NULL,
price DECIMAL(10,2) DEFAULT 0.00,
duration_hours INTEGER DEFAULT 0,
difficulty_level ENUM('beginner', 'intermediate', 'advanced') DEFAULT 'beginner',
created_at DATETIME DEFAULT CURRENT_TIMESTAMP,
is_published BOOLEAN DEFAULT false,

-- ����
FOREIGN KEY (category_id) REFERENCES categories(category_id)

ON DELETE RESTRICT ON UPDATE CASCADE,

-- ����
CONSTRAINT chk_price CHECK (price >= 0),
CONSTRAINT chk_duration CHECK (duration_hours >= 0),

-- ��
INDEX idx_category (category_id),
INDEX idx_price (price),
INDEX idx_difficulty (difficulty_level)

);

2.1.3 ���� - ���������

-- ������
CREATE INDEX idx_users_name ON users(name);

-- ��������������
CREATE INDEX idx_course_category_price ON courses(category_id, price);

-- ������
CREATE UNIQUE INDEX idx_users_email_unique ON users(email);

-- �������SQLite���
CREATE INDEX idx_active_users ON users(name) WHERE is_active = true;

2.1.4 ���� - �������

-- ��������������
CREATE VIEW active_user_course_stats AS
SELECT

u.user_id,
u.name,
u.email,
COUNT(e.course_id) as enrolled_courses,
SUM(e.amount_paid) as total_spent,
AVG(c.price) as avg_course_price

FROM users u
LEFT JOIN enrollments e ON u.user_id = e.user_id
LEFT JOIN courses c ON e.course_id = c.course_id
WHERE u.is_active = true
GROUP BY u.user_id, u.name, u.email;

4



2.2 1.2 ALTER - ������
-- ����
ALTER TABLE users ADD COLUMN phone VARCHAR(20);
ALTER TABLE users ADD COLUMN profile_picture_url TEXT;

-- �����
ALTER TABLE courses ALTER COLUMN title SET NOT NULL; -- ����
ALTER TABLE courses ALTER COLUMN description TYPE TEXT; -- ������

-- ����
ALTER TABLE users ADD CONSTRAINT chk_phone_format
CHECK (phone IS NULL OR length(phone) >= 10);

-- ����
ALTER TABLE users DROP CONSTRAINT chk_phone_format;

-- ����
ALTER TABLE users RENAME COLUMN phone TO phone_number;

-- ����
ALTER TABLE users RENAME TO platform_users;
ALTER TABLE platform_users RENAME TO users; -- ���

2.3 1.3 DROP - ����
-- ����
DROP INDEX idx_users_name;

-- ����
DROP VIEW active_user_course_stats;

-- ��������������
-- DROP TABLE courses; -- ������������

-- ������������
-- DROP DATABASE online_education_platform;

2.4 1.4 TRUNCATE - �����
-- ������������
TRUNCATE TABLE user_progress; -- �DELETE FROM table ��

-- ���TRUNCATE����DELETE�������������

� DDL���� 1. ��������������snake_case 2. ���������������������� 3. ���������������������� 4. �������DDL����������

3 �������� (DML) - ���������
�����DML��������INSERT�������UPDATE������DELETE��������������������������

3.1 2.1 INSERT - �����
3.1.1 ������

-- 1. ������
INSERT INTO categories (name, description)
VALUES ('����', '����������������');

5



INSERT INTO categories (name, description) VALUES
('����', '�����������������'),
('����', '�����UI/UX���������'),
('����', '�����������������');

-- 2. ������
INSERT INTO users (name, email, birth_date, gender) VALUES
('��', 'zhang.san@email.com', '1995-05-15', 'male'),
('��', 'li.si@email.com', '1992-08-22', 'female'),
('��', 'wang.wu@email.com', '1988-12-03', 'male'),
('��', 'zhao.liu@email.com', '1990-03-18', 'female');

-- 3. ������
INSERT INTO courses (title, description, category_id, price, duration_hours, difficulty_level, is_published) VALUES
('Python������', '����Python�������������������', 1, 199.00, 40, 'beginner', true),
('������', '��Python���������pandas�numpy�matplotlib', 2, 299.00, 30, 'intermediate', true),
('UI������', 'Figma�Sketch�����������', 3, 159.00, 25, 'beginner', true);

3.1.2 ������

-- 1. ��������INSERT ... SELECT�
INSERT INTO user_progress (user_id, lesson_id, completed_at, time_spent_minutes)
SELECT

u.user_id,
l.lesson_id,
datetime('now', '-' || abs(random()) % 30 || ' days'), -- ����30��
30 + abs(random()) % 60 -- 30-90������

FROM users u
CROSS JOIN lessons l
WHERE u.user_id <= 2 AND l.lesson_id <= 3; -- �����

-- 2. ��������UPSERT�
INSERT INTO users (email, name, updated_at)
VALUES ('zhang.san@email.com', '������', datetime('now'))
ON CONFLICT(email) DO UPDATE SET

name = excluded.name,
updated_at = excluded.updated_at;

-- 3. ������
INSERT INTO enrollments (user_id, course_id, enrollment_date, amount_paid, status) VALUES
(1, 1, datetime('now'), 199.00, 'active'),
(1, 2, datetime('now'), 299.00, 'active'),
(2, 1, datetime('now'), 199.00, 'active'),
(3, 3, datetime('now'), 159.00, 'completed'),
(4, 1, datetime('now'), 199.00, 'active');

3.2 2.2 UPDATE - �����
3.2.1 ������

-- 1. ����
UPDATE users
SET name = '���', updated_at = datetime('now')
WHERE email = 'zhang.san@email.com';

-- 2. ����
UPDATE courses
SET price = price * 0.8 -- ��8�
WHERE category_id = 1 AND is_published = true;

6



-- 3. ��CASE������
UPDATE courses
SET difficulty_level =

CASE
WHEN duration_hours < 20 THEN 'beginner'
WHEN duration_hours BETWEEN 20 AND 40 THEN 'intermediate'
ELSE 'advanced'

END
WHERE difficulty_level IS NULL;

3.2.2 ������

-- 1. ��������
UPDATE users
SET is_active = false
WHERE user_id IN (

SELECT DISTINCT u.user_id
FROM users u
LEFT JOIN enrollments e ON u.user_id = e.user_id
WHERE e.enrollment_date < date('now', '-365 days')
OR e.enrollment_date IS NULL

);

-- 2. ��JOIN������������
UPDATE courses
SET price = c.price * 1.1
FROM courses c
JOIN categories cat ON c.category_id = cat.category_id
WHERE cat.name = '����' AND c.created_at < date('now', '-180 days');

3.3 2.3 DELETE - �����
3.3.1 ������

-- 1. ����
DELETE FROM user_progress
WHERE completed_at < date('now', '-365 days');

-- 2. �������
DELETE FROM enrollments
WHERE course_id IN (

SELECT course_id
FROM courses
WHERE is_published = false AND created_at < date('now', '-90 days')

);

3.3.2 ������

-- 1. �������������
-- ��deleted_at����������
ALTER TABLE users ADD COLUMN deleted_at DATETIME NULL;

-- �����
UPDATE users
SET deleted_at = datetime('now'), is_active = false
WHERE user_id = 1;

-- �����������

7



SELECT * FROM users WHERE deleted_at IS NULL;

� DML���������
flowchart TD

A[DML��] --> B{������?}
B -->|�| C[BEGIN TRANSACTION]
B -->|�| D[����]
C --> E[��DML��]
E --> F{����}
F -->|��| G[COMMIT]
F -->|��| H[ROLLBACK]
D --> I[����]
G --> I
H --> I

1. ��������������������
2. �����UPDATE�DELETE�������
3. �����������������
4. ���������������

4 �������� (TCL) - ���������
�����TCL���������������������������������������������

4.1 3.1 ACID������

mindmap
root((ACID))

Atomicity
���
���������
���������

Consistency
���
�������
������

Isolation
���
��������
������

Durability
���
���������
�������

4.2 3.2 ������
4.2.1 �������

-- 1. ������
BEGIN TRANSACTION; -- ����

-- ��������
INSERT INTO users (name, email, birth_date, gender)
VALUES ('���', 'newuser@email.com', '1995-01-01', 'male');

-- ��������ID�SQLite���

8



-- ���������������last_insert_rowid()

-- �������
INSERT INTO user_progress (user_id, lesson_id, completed_at)
SELECT last_insert_rowid(), lesson_id, NULL
FROM lessons WHERE course_id = 1;

-- ��������
-- ������
COMMIT; -- ����

-- ������
-- ROLLBACK; -- ����

4.2.2 ����Savepoint�- �������

BEGIN TRANSACTION;

-- �����
SAVEPOINT user_creation;

INSERT INTO users (name, email, birth_date, gender)
VALUES ('����1', 'test1@email.com', '1990-01-01', 'male');

INSERT INTO users (name, email, birth_date, gender)
VALUES ('����2', 'test2@email.com', '1991-01-01', 'female');

-- ��������
SAVEPOINT course_enrollment;

-- ���������
INSERT INTO enrollments (user_id, course_id, enrollment_date, amount_paid)
VALUES (999, 1, datetime('now'), 199.00); -- ��ID�������

-- ��������
ROLLBACK TO SAVEPOINT course_enrollment;

-- �����
RELEASE SAVEPOINT course_enrollment;

COMMIT;

4.3 3.3 ������
-- �����������������
-- SQLite���������

-- 1. ���� (Read Uncommitted)
PRAGMA read_uncommitted = true;

-- 2. ���� (Read Committed) - ��������
-- ���������������

-- 3. ���� (Repeatable Read)
-- ������������������

-- 4. ���� (Serializable) - SQLite��
-- ��������������

9



4.3.1 ������

-- ���������

-- ��1�
BEGIN TRANSACTION;
SELECT price FROM courses WHERE course_id = 1; -- ����199.00
-- ���������2��

-- ��2�
BEGIN TRANSACTION;
UPDATE courses SET price = 299.00 WHERE course_id = 1;
COMMIT;

-- ����1�
SELECT price FROM courses WHERE course_id = 1; -- ����299.00�������
COMMIT;

4.4 3.4 ������������
4.4.1 ��1���������

BEGIN TRANSACTION;

-- 1. ������
INSERT INTO users (name, email, birth_date, gender)
VALUES ('��', 'liming@email.com', '1992-06-15', 'male');

-- 2. ����������������
INSERT INTO user_activity_log (user_id, activity_type, created_at)
VALUES (last_insert_rowid(), 'registration', datetime('now'));

-- 3. ���������
INSERT INTO enrollments (user_id, course_id, enrollment_date, amount_paid, status)
VALUES (last_insert_rowid(), 1, datetime('now'), 0.00, 'active');

COMMIT;

4.4.2 ��2�������

-- �����������
BEGIN TRANSACTION;

SAVEPOINT before_purchase;

-- 1. ���������
-- 2. ���������
-- 3. ������
INSERT INTO enrollments (user_id, course_id, enrollment_date, amount_paid, status)
VALUES (1, 2, datetime('now'), 299.00, 'active');

-- 4. ������������������
UPDATE users
SET updated_at = datetime('now')
WHERE user_id = 1;

-- 5. ������
-- INSERT INTO payment_log (user_id, amount, payment_method, transaction_id)
-- VALUES (1, 299.00, 'credit_card', 'TXN123456789');

10



-- ������
COMMIT;

-- ������
-- ROLLBACK TO SAVEPOINT before_purchase;

� TCL����
flowchart LR

A[������] --> B[BEGIN TRANSACTION]
B --> C[������]
C --> D{����?}
D -->|�| E[COMMIT]
D -->|�| F[ROLLBACK]
E --> G[������]
F --> H[������]
G --> I[��]
H --> I

1. ���������������������
2. �������������������
3. ��������������������������
4. �������������

5 �������� (DQL) - SELECT������
�����SELECT��������������������������������������������

5.1 4.1 SQL������ - �����

flowchart TD
A[FROM ��] --> B[JOIN ��]
B --> C[WHERE ���]
C --> D[GROUP BY ��]
D --> E[HAVING ���]
E --> F[SELECT ���]
F --> G[DISTINCT ��]
G --> H[ORDER BY ��]
H --> I[LIMIT/OFFSET ��]

style A fill:#f9f,stroke:#333,stroke-width:2px
style F fill:#bbf,stroke:#333,stroke-width:2px

����������������������������
-- ���������
INSERT INTO lessons (course_id, title, content, duration_minutes, sequence_number) VALUES
(1, 'Python����', 'Python�������', 45, 1),
(1, '�������', 'Python�������', 38, 2),
(1, '����', '�������', 52, 3),
(1, '�����', '���������', 41, 4),
(2, '������', 'pandas��������', 35, 1),
(2, '����', '���������', 48, 2),
(2, '�����', 'matplotlib�seaborn��', 55, 3),
(3, 'Figma��', 'Figma�������', 30, 1),
(3, '����', '����������', 42, 2);

11



5.2 4.2 FROM�� - ������
5.2.1 �����

-- 1. ����
SELECT * FROM users;

-- 2. �����
SELECT u.name, u.email, u.created_at
FROM users u
WHERE u.is_active = true;

-- 3. ��������
SELECT course_stats.*
FROM (

SELECT
course_id,
COUNT(*) as enrollment_count,
AVG(amount_paid) as avg_paid

FROM enrollments
WHERE status = 'active'
GROUP BY course_id

) course_stats
WHERE course_stats.enrollment_count > 1;

5.3 4.3 JOIN�� - �������
5.3.1 JOIN����

graph LR
A[LEFT TABLE]
B[RIGHT TABLE]

subgraph "INNER JOIN"
C[��������]

end

subgraph "LEFT JOIN"
D[��������<br/>������]

end

subgraph "RIGHT JOIN"
E[��������<br/>������]

end

subgraph "FULL OUTER JOIN"
F[��������]

end

-- 1. INNER JOIN - ��������
SELECT

u.name as student_name,
c.title as course_title,
e.enrollment_date,
e.amount_paid

FROM users u
INNER JOIN enrollments e ON u.user_id = e.user_id
INNER JOIN courses c ON e.course_id = c.course_id
WHERE u.is_active = true;

-- 2. LEFT JOIN - ��������������������

12



SELECT
u.name,
u.email,
COUNT(e.course_id) as course_count,
COALESCE(SUM(e.amount_paid), 0) as total_spent

FROM users u
LEFT JOIN enrollments e ON u.user_id = e.user_id
GROUP BY u.user_id, u.name, u.email;

-- 3. ���������
SELECT

u.name as student_name,
c.title as course_title,
cat.name as category_name,
COUNT(up.progress_id) as lessons_completed,
COUNT(l.lesson_id) as total_lessons,
ROUND(

COUNT(up.progress_id) * 100.0 / COUNT(l.lesson_id),
2

) as completion_percentage
FROM users u
JOIN enrollments e ON u.user_id = e.user_id
JOIN courses c ON e.course_id = c.course_id
JOIN categories cat ON c.category_id = cat.category_id
LEFT JOIN lessons l ON c.course_id = l.course_id
LEFT JOIN user_progress up ON u.user_id = up.user_id

AND l.lesson_id = up.lesson_id
WHERE e.status = 'active'
GROUP BY u.user_id, c.course_id, u.name, c.title, cat.name
ORDER BY completion_percentage DESC;

5.3.2 ��� - ������

-- �����������
SELECT DISTINCT

u1.name as current_user,
u2.name as classmate,
c.title as course_title

FROM users u1
JOIN enrollments e1 ON u1.user_id = e1.user_id
JOIN enrollments e2 ON e1.course_id = e2.course_id
JOIN users u2 ON e2.user_id = u2.user_id
JOIN courses c ON e1.course_id = c.course_id
WHERE u1.user_id != u2.user_id -- ����

AND u1.name = '��'
ORDER BY c.title, u2.name;

5.4 4.4 WHERE�� - �������
5.4.1 ������

-- 1. �������
SELECT * FROM courses
WHERE price > 200

AND difficulty_level = 'intermediate'
AND is_published = true;

-- 2. ����
SELECT * FROM users

13



WHERE birth_date BETWEEN '1990-01-01' AND '1999-12-31'
AND created_at >= datetime('now', '-30 days');

-- 3. ����
SELECT * FROM courses
WHERE title LIKE '%Python%' -- ��Python

OR title LIKE '��%'; -- �"��"��

-- 4. ����
SELECT * FROM courses
WHERE category_id IN (1, 2) -- �������

AND difficulty_level NOT IN ('advanced');

5.4.2 ������

-- 1. NULL���
SELECT * FROM users
WHERE birth_date IS NOT NULL

AND (phone IS NULL OR length(phone) < 11);

-- 2. �����������
SELECT * FROM users
WHERE email REGEXP '^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$';

-- 3. �������
SELECT * FROM enrollments
WHERE date(enrollment_date) = date('now') -- �����

OR strftime('%w', enrollment_date) = '0'; -- �����

-- 4. �����
SELECT * FROM users
WHERE user_id IN (

SELECT DISTINCT user_id
FROM enrollments
WHERE amount_paid > 200

);

5.5 4.5 GROUP BY����� - �������
5.5.1 �������

-- 1. ���������
SELECT

c.title,
COUNT(*) as enrollment_count,
AVG(e.amount_paid) as avg_payment,
MIN(e.amount_paid) as min_payment,
MAX(e.amount_paid) as max_payment,
SUM(e.amount_paid) as total_revenue

FROM courses c
JOIN enrollments e ON c.course_id = e.course_id
GROUP BY c.course_id, c.title
ORDER BY enrollment_count DESC;

-- 2. ���������
SELECT

strftime('%Y-%m', enrollment_date) as month,
COUNT(*) as enrollments,
SUM(amount_paid) as monthly_revenue,

14



COUNT(DISTINCT user_id) as unique_students
FROM enrollments
GROUP BY strftime('%Y-%m', enrollment_date)
ORDER BY month;

5.5.2 HAVING�� - ������

-- ������������� > 2�
SELECT

c.title,
COUNT(*) as enrollment_count,
AVG(e.amount_paid) as avg_payment

FROM courses c
JOIN enrollments e ON c.course_id = e.course_id
GROUP BY c.course_id, c.title
HAVING COUNT(*) > 1 -- ����������enrollment_count

AND AVG(e.amount_paid) > 150
ORDER BY enrollment_count DESC;

-- ���HAVING��
SELECT

cat.name as category,
COUNT(DISTINCT c.course_id) as course_count,
COUNT(DISTINCT e.user_id) as student_count,
SUM(e.amount_paid) as category_revenue

FROM categories cat
JOIN courses c ON cat.category_id = c.category_id
JOIN enrollments e ON c.course_id = e.course_id
GROUP BY cat.category_id, cat.name
HAVING course_count >= 1

AND category_revenue > 200
AND student_count > 1;

5.6 4.6 ������
5.6.1 ���� - �������

-- 1. ����
SELECT

u.name,
c.title,
e.amount_paid,
ROW_NUMBER() OVER (ORDER BY e.amount_paid DESC) as payment_rank,
RANK() OVER (ORDER BY e.amount_paid DESC) as payment_rank_with_ties,
DENSE_RANK() OVER (ORDER BY e.amount_paid DESC) as dense_payment_rank

FROM users u
JOIN enrollments e ON u.user_id = e.user_id
JOIN courses c ON e.course_id = c.course_id;

-- 2. ������
SELECT

u.name,
c.title,
cat.name as category,
e.amount_paid,
AVG(e.amount_paid) OVER (PARTITION BY cat.category_id) as category_avg_payment,
e.amount_paid - AVG(e.amount_paid) OVER (PARTITION BY cat.category_id) as payment_diff_from_avg

FROM users u
JOIN enrollments e ON u.user_id = e.user_id

15



JOIN courses c ON e.course_id = c.course_id
JOIN categories cat ON c.category_id = cat.category_id;

-- 3. ����
SELECT

enrollment_date,
amount_paid,
SUM(amount_paid) OVER (ORDER BY enrollment_date) as running_total,
LAG(amount_paid, 1) OVER (ORDER BY enrollment_date) as previous_payment,
LEAD(amount_paid, 1) OVER (ORDER BY enrollment_date) as next_payment

FROM enrollments
ORDER BY enrollment_date;

5.6.2 ������ (CTE)

-- 1. ��CTE
WITH course_stats AS (

SELECT
c.course_id,
c.title,
COUNT(e.enrollment_id) as enrollment_count,
AVG(e.amount_paid) as avg_payment

FROM courses c
LEFT JOIN enrollments e ON c.course_id = e.course_id
GROUP BY c.course_id, c.title

),
popular_courses AS (

SELECT * FROM course_stats
WHERE enrollment_count >= 2

)
SELECT

title,
enrollment_count,
ROUND(avg_payment, 2) as avg_payment

FROM popular_courses
ORDER BY enrollment_count DESC;

-- 2. ��CTE��������
WITH RECURSIVE course_recommendations AS (

-- ��������������
SELECT

u.user_id,
u.name,
c.course_id,
c.title,
1 as level

FROM users u
JOIN enrollments e ON u.user_id = e.user_id
JOIN courses c ON e.course_id = c.course_id
WHERE u.name = '��'

UNION ALL

-- ��������������
SELECT

cr.user_id,
cr.name,
c2.course_id,
c2.title,

16



cr.level + 1
FROM course_recommendations cr
JOIN courses c1 ON cr.course_id = c1.course_id
JOIN courses c2 ON c1.category_id = c2.category_id
WHERE cr.level < 2

AND c2.course_id NOT IN (
SELECT course_id FROM course_recommendations

)
)
SELECT DISTINCT name, title, level
FROM course_recommendations
ORDER BY level, title;

5.6.3 ������

-- 1. �����
SELECT

u.name,
u.email,
(SELECT COUNT(*) FROM enrollments e WHERE e.user_id = u.user_id) as course_count,
(SELECT MAX(amount_paid) FROM enrollments e WHERE e.user_id = u.user_id) as max_payment

FROM users u;

-- 2. �����
SELECT u.name, u.email
FROM users u
WHERE EXISTS (

SELECT 1 FROM enrollments e
WHERE e.user_id = u.user_id

AND e.amount_paid > 200
);

-- 3. ��������
SELECT

c.title,
c.price,
(

SELECT COUNT(*)
FROM enrollments e
WHERE e.course_id = c.course_id

) as enrollment_count,
CASE

WHEN (SELECT COUNT(*) FROM enrollments e WHERE e.course_id = c.course_id) > 2
THEN '����'
WHEN (SELECT COUNT(*) FROM enrollments e WHERE e.course_id = c.course_id) > 0
THEN '����'
ELSE '����'

END as popularity
FROM courses c
WHERE c.is_published = true;

5.7 4.7 ����

-- 1. UNION - �����
SELECT name as person_name, 'Student' as role FROM users
WHERE user_id IN (SELECT DISTINCT user_id FROM enrollments)
UNION
SELECT title as person_name, 'Course' as role FROM courses
WHERE is_published = true;

17



-- 2. INTERSECT - ��
SELECT user_id FROM enrollments WHERE course_id = 1
INTERSECT
SELECT user_id FROM enrollments WHERE course_id = 2;

-- 3. EXCEPT - ��
SELECT user_id FROM users WHERE is_active = true
EXCEPT
SELECT DISTINCT user_id FROM enrollments;

5.8 4.8 ORDER BY�LIMIT - ��������

-- 1. ����
SELECT

u.name,
c.title,
e.amount_paid,
e.enrollment_date

FROM users u
JOIN enrollments e ON u.user_id = e.user_id
JOIN courses c ON e.course_id = c.course_id
ORDER BY

e.amount_paid DESC, -- �������
e.enrollment_date ASC, -- �����������
u.name; -- �������

-- 2. �������
SELECT

u.name,
u.birth_date,
CASE

WHEN date('now') - birth_date > 365.25 * 30 THEN '30+'
WHEN date('now') - birth_date > 365.25 * 25 THEN '25-30'
ELSE '25��'

END as age_group
FROM users u
ORDER BY

CASE
WHEN date('now') - birth_date > 365.25 * 30 THEN 1
WHEN date('now') - birth_date > 365.25 * 25 THEN 2
ELSE 3

END,
u.name;

-- 3. ����
SELECT

u.name,
c.title,
e.amount_paid

FROM users u
JOIN enrollments e ON u.user_id = e.user_id
JOIN courses c ON e.course_id = c.course_id
ORDER BY e.enrollment_date DESC
LIMIT 10 OFFSET 0; -- ������10�

-- ��������
WITH numbered_results AS (

SELECT

18



u.name,
c.title,
e.amount_paid,
ROW_NUMBER() OVER (ORDER BY e.enrollment_date DESC) as row_num

FROM users u
JOIN enrollments e ON u.user_id = e.user_id
JOIN courses c ON e.course_id = c.course_id

)
SELECT name, title, amount_paid
FROM numbered_results
WHERE row_num BETWEEN 11 AND 20; -- ���

5.9 � ������
5.9.1 ������

-- ��������
EXPLAIN QUERY PLAN
SELECT

u.name,
COUNT(e.course_id) as course_count

FROM users u
LEFT JOIN enrollments e ON u.user_id = e.user_id
WHERE u.is_active = true
GROUP BY u.user_id, u.name;

5.9.2 ����

flowchart TD
A[����] --> B[����]
A --> C[����]
A --> D[�����]

B --> E[����]
B --> F[����]
B --> G[����]

C --> H[��SELECT *]
C --> I[�������]
C --> J[��JOIN��]

D --> K[��LIMIT]
D --> L[����]
D --> M[����]

� SELECT������

1. ���������FROM→WHERE→GROUP BY→HAVING→SELECT→ORDER BY�����
2. ���������WHERE�JOIN���������
3. ��N+1�����JOIN������
4. ������������LIMIT���
5. ������������������INNER JOIN�LEFT JOIN
6. ��������������������������

6 ��
�������SQL��������������������������������������������������������SQL�����������������������

������SQL�������������������������������������������������

19



SQL���������������������������������������������������SQL���������������

20


	SQL完整使用指南：从数据定义到复杂查询
	前言
	示例数据库设计

	一、数据定义语言 (DDL) - 构建数据世界的基石
	1.1 CREATE - 创造数据结构
	创建数据库
	创建表结构
	创建索引 - 性能优化的秘密武器
	创建视图 - 数据的逻辑窗口

	1.2 ALTER - 修改现有结构
	1.3 DROP - 删除结构
	1.4 TRUNCATE - 清空表数据

	二、数据操作语言 (DML) - 数据的生命周期管理
	2.1 INSERT - 数据的诞生
	基础插入操作
	高级插入技巧

	2.2 UPDATE - 数据的成长
	基础更新操作
	高级更新技巧

	2.3 DELETE - 数据的清理
	基础删除操作
	安全删除策略


	三、事务控制语言 (TCL) - 数据一致性的守护者
	3.1 ACID特性深度解析
	3.2 基础事务控制
	事务的生命周期
	保存点（Savepoint）- 事务内的检查点

	3.3 隔离级别详解
	并发问题演示

	3.4 实际业务场景中的事务应用
	场景1：用户注册完整流程
	场景2：课程购买事务


	四、数据查询语言 (DQL) - SELECT语句完全指南
	4.1 SQL逻辑处理顺序 - 引擎的视角
	4.2 FROM子句 - 数据源的确立
	基础表查询

	4.3 JOIN连接 - 数据关系的桥梁
	JOIN类型详解
	自连接 - 同表不同角色

	4.4 WHERE子句 - 数据的精确过滤
	基础过滤条件
	高级过滤技巧

	4.5 GROUP BY和聚合函数 - 数据的汇总艺术
	基础分组和聚合
	HAVING子句 - 分组后的过滤

	4.6 高级查询技术
	窗口函数 - 数据分析的利器
	通用表表达式 (CTE)
	子查询的艺术

	4.7 集合操作
	4.8 ORDER BY和LIMIT - 结果的排序和限制
	📊 查询性能优化
	执行计划分析
	优化建议


	总结

