Contents

1

2.1

2.2
2.3
24

3.1

3.2

3.3

4.1
4.2

4.3

44

5.1

5.2

5.3

5.4

5.5

5.6

5.7
5.8
5.9

2

... 2
... 2
(DDL) - 3
1.1 CREATE - e e 3
201 3
2. 1.2 e e 3
2.1.3 R 4
2.14 e e e e e e e e e e 4
1.2 ALTER - . o e 5
1.3 DROP - e 5
1.4 TRUNCATE - . o e e e e s 5
(DML) - 5
2.1 INSERT - e 5
. 00 0 5
3. 1.2 6
2.2 UPDATE - . . e 6
321 e 6
3.2.2 e 7
23 DELETE - . . 7
3.3 1 7
3.3 2 e 7
(TCL) - 8
3.1 ACID e e e 8
B e 8
4.2.1 e 8
4.2.2 Savepoint - L .. e e 9
5 70 9
4.3 1 e e 10
B e 10
440 1 e 10
442 2 e 10
(DQL) - SELECT 11
4.1 SQL e 11
4.2 FROM - e 12
B.2.1 e 12
4.3 JOIN - e 12
5.3.1 JOIN L o e 12
5.3.2 e 13
4.4 WHERE - e 13
DAL 13
B.A.2 e e e 14
4.5 GROUP BY - e 14
B.5.1 e 14
5.5.2 HAVING - e 15
4.6 15
5.6.1 e 15
5.6.2 (CTE) .« oo 16
B.6.3 e 17
AT e 17
4.8 ORDER BY LIMIT - . . e 18
... 19

9.9 1 e e e 19
0.9.2 19

1 SQL

1.1
SQL SQL SQL SQL
1.2
erDiagram
USERS | |--o{ ENROLLMENTS : "enrolls"
COURSES | |--o{ ENROLLMENTS : "enrolled_in"
COURSES | |--o{ LESSONS : "contains"
USERS | |--o{ USER_PROGRESS : "tracks"
LESSONS | |--o{ USER_PROGRESS : "progressed_in"
CATEGORIES ||--o{ COURSES : "categorizes"
USERS {

int user_id PK
varchar name
varchar email

date birth_date
enum gender
datetime created_at
datetime updated_at
boolean is_active

3

CATEGORIES {
int category_id PK
varchar name
text description
datetime created_at

}

COURSES {
int course_id PK
varchar title
text description
int category_id FK
decimal price
int duration_hours
enum difficulty_level
datetime created_at
boolean is_published

LESSONS {

int lesson_id PK

int course_id FK
varchar title

text content

int duration_minutes
int sequence_number
datetime created_at

19

ENROLLMENTS {
int enrollment_id PK
int user_id FK
int course_id FK
datetime enrollment_date
decimal amount_paid
enum status

}

USER_PROGRESS {
int progress_id PK
int user_id FK
int lesson_id FK
datetime completed_at
int time_spent_minutes

2 (DDL) -

o N

DDL CREATE ALTER DROP

2.1 1.1 CREATE -
2.1.1

CREATE DATABASE online_education_platform
CHARACTER SET utf8mb4
COLLATE utf8mb4_unicode_ci;

2.1.2

—— 1. —

CREATE TABLE users (
user_id INTEGER PRIMARY KEY AUTOINCREMENT,
name VARCHAR(100) NOT NULL, -
email VARCHAR(255) NOT NULL UNIQUE, —=
birth_date DATE, -
gender ENUM('male', 'female', 'other') DEFAULT
created_at DATETIME DEFAULT CURRENT_TIMESTAMP,

updated_at DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,

is_active BOOLEAN DEFAULT true,

'other', -—-

CONSTRAINT chk_age CHECK (birth_date <= date('now', '-13 years')), -—-—

INDEX idx_email (email), -
INDEX idx_created_at (created_at)
);

-— 2.
CREATE TABLE categories (
category_id INTEGER PRIMARY KEY AUTOINCREMENT,
name VARCHAR(50) NOT NULL UNIQUE,
description TEXT,
created_at DATETIME DEFAULT CURRENT_TIMESTAMP
)3

13

R 3 —

CREATE TABLE courses (
course_id INTEGER PRIMARY KEY AUTOINCREMENT,
title VARCHAR(200) NOT NULL,
description TEXT,
category_id INTEGER NOT NULL,
price DECIMAL(10,2) DEFAULT 0.00,
duration_hours INTEGER DEFAULT O,
difficulty_level ENUM('beginner', 'intermediate', 'advanced') DEFAULT 'beginner',
created_at DATETIME DEFAULT CURRENT_TIMESTAMP,
is_published BOOLEAN DEFAULT false,

FOREIGN KEY (category_id) REFERENCES categories(category_id)
ON DELETE RESTRICT ON UPDATE CASCADE,

CONSTRAINT chk_price CHECK (price >= 0),
CONSTRAINT chk_duration CHECK (duration_hours >= 0),

INDEX idx_category (category_id),
INDEX idx_price (price),
INDEX idx_difficulty (difficulty_level)

CREATE INDEX idx_users_name ON users(name) ;

CREATE INDEX idx_course_category_price ON courses(category_id, price);

CREATE UNIQUE INDEX idx_users_email_unique ON users(email);

- SQLite
CREATE INDEX idx_active_users ON users(name) WHERE is_active = true;

2.1.4 -

CREATE VIEW active_user_course_stats AS
SELECT
u.user_id,
u.name,
u.email,
COUNT (e.course_id) as enrolled_courses,
SUM(e.amount_paid) as total_spent,
AVG(c.price) as avg_course_price
FROM users u
LEFT JOIN enrollments e ON u.user_id = e.user_id
LEFT JOIN courses c ON e.course_id = c.course_id
WHERE u.is_active = true
GROUP BY u.user_id, u.name, u.email;

2.2 1.2 ALTER -

ALTER TABLE users ADD COLUMN phone VARCHAR(20);
ALTER TABLE users ADD COLUMN profile_picture_url TEXT;

ALTER TABLE courses ALTER COLUMN title SET NOT NULL; --
ALTER TABLE courses ALTER COLUMN description TYPE TEXT; --

ALTER TABLE users ADD CONSTRAINT chk_phone_format
CHECK (phone IS NULL OR length(phone) >= 10);

ALTER TABLE users DROP CONSTRAINT chk_phone_format;

ALTER TABLE users RENAME COLUMN phone TO phone_number;

ALTER TABLE users RENAME TO platform_users;
ALTER TABLE platform_users RENAME TO users; --

2.3 1.3 DROP -

DROP INDEX idx_users_name;

DROP VIEW active_user_course_stats;

—-— DROP TABLE courses; -—-

—-— DROP DATABASE online_education_platform;

2.4 1.4 TRUNCATE -

TRUNCATE TABLE user_progress; -- DELETE FROM table

-- TRUNCATE DELETE

DDL 1. snake case 2. 3. 4. DDL

3 (DML) -

DML INSERT UPDATE DELETE

3.1 2.1 INSERT -
3.1.1
-- 1.

INSERT INTO categories (name, description)
VALUES (' ', ' DN

INSERT INTO categories (name, description) VALUES

(I ') ! ')’

(', ' UI/UX ",

(I " ! ’);

- 2.

INSERT INTO users (name, email, birth_date, gender) VALUES

(' ', 'zhang.san@email.com', '1995-05-15', 'male'),

("', 'li.si@email.com', '1992-08-22', 'female'),

(" ', 'wang.wu@email.com', '1988-12-03', 'male'),

(" ', 'zhao.liu@email.com', '1990-03-18', 'female');

-- 3.

INSERT INTO courses (title, description, category_id, price, duration_hours, difficulty_level, is_published) V
('Python ', ' Python ', 1, 199.00, 40, 'beginner', true),

(! ', ' Python pandas numpy matplotlib', 2, 299.00, 30, 'intermediate', true),
('uI ', 'Figma Sketch ', 3, 159.00, 25, 'beginner', true);

3.1.2

- 1. INSERT ... SELECT

INSERT INTO user_progress (user_id, lesson_id, completed_at, time_spent_minutes)
SELECT

u.user_id,
l.lesson_id,
datetime('now', '-' || abs(random()) % 30 || ' days'), -- 30
30 + abs(random()) % 60 -- 30-90
FROM users u
CROSS JOIN lessons 1
WHERE u.user_id <= 2 AND 1l.lesson_id <= 3; -—-

- 2. UPSERT
INSERT INTO users (email, name, updated_at)
VALUES ('zhang.san®@email.com', ' ', datetime('now'))

ON CONFLICT(email) DO UPDATE SET
name = excluded.name,
updated_at = excluded.updated_at;

-- 3.

INSERT INTO enrollments (user_id, course_id, enrollment_date, amount_paid, status) VALUES
(1, 1, datetime('now'), 199.00, 'active'),

(1, 2, datetime('now'), 299.00, 'active'),

(2, 1, datetime('now'), 199.00, 'active'),

(3, 3, datetime('now'), 159.00, 'completed'),

(4, 1, datetime('now'), 199.00, 'active');

3.2 2.2 UPDATE -

3.2.1

-— 1.

UPDATE users

SET name = ' ', updated_at = datetime('now')
WHERE email = 'zhang.san@email.com';

-- 2.

UPDATE courses

SET price = price * 0.8 -- 8

WHERE category_id = 1 AND is_published = true;

-- 3. CASE
UPDATE courses
SET difficulty_level =
CASE
WHEN duration_hours < 20 THEN 'beginner'
WHEN duration_hours BETWEEN 20 AND 40 THEN 'intermediate'
ELSE 'advanced'
END
WHERE difficulty_level IS NULL;

3.2.2

-- 1.

UPDATE users

SET is_active = false

WHERE user_id IN (
SELECT DISTINCT u.user_id
FROM users u
LEFT JOIN enrollments e ON u.user_id = e.user_id
WHERE e.enrollment_date < date('now', '-365 days')
OR e.enrollment_date IS NULL

);

-- 2. JOIN

UPDATE courses

SET price = c.price * 1.1

FROM courses c

JOIN categories cat ON c.category_id = cat.category_id

WHERE cat.name = ' ' AND c.created_at < date('now', '-180 days');

3.3 2.3 DELETE -
3.3.1

-— 1.
DELETE FROM user_progress
WHERE completed_at < date('now', '-365 days');

-— 2.

DELETE FROM enrollments

WHERE course_id IN (
SELECT course_id
FROM courses

WHERE is_published = false AND created_at < date('now', '-90 days')
)3
3.3.2
-- 1.
-— deleted_at

ALTER TABLE users ADD COLUMN deleted_at DATETIME NULL;

UPDATE users
SET deleted_at = datetime('now'), is_active = false
WHERE user_id = 1;

SELECT * FROM users WHERE deleted_at IS NULL;

DML

flowchart TD
A[DML] --> B{ 7}
B -->| | C[BEGIN TRANSACTION]
-=>| | D[1]
--> E[DML 1]
-->F{ }
-->| | G[COMMIT]
-->| | H[ROLLBACK]
-—> I[1]

T QU mmmE QW

UPDATE DELETE

= 0N

4 (TCL) -

TCL

4.1 3.1 ACID
mindmap

root ((ACID))
Atomicity

Consistency

Isolation

Durability

4.2 3.2
4.2.1

-- 1.
BEGIN TRANSACTION; --

INSERT INTO users (name, email, birth_date, gender)
VALUES (' ', 'mewuser@email.com', '1995-01-01', 'male');

-- ID SQLite

- last_insert _rowid()

INSERT INTO user_progress (user_id, lesson_id, completed_at)
SELECT last_insert_rowid(), lesson_id, NULL
FROM lessons WHERE course_id = 1;

COMMIT; —-

-- ROLLBACK; --

4.2.2 Savepoint -

BEGIN TRANSACTION;

SAVEPOINT user_creation;

INSERT INTO users (name, email, birth_date, gender)
VALUES (' 1', 'testl@email.com', '1990-01-01', 'male');

INSERT INTO users (name, email, birth_date, gender)
VALUES (' 2', 'test2@email.com', '1991-01-01', 'female');

SAVEPOINT course_enrollment;

INSERT INTO enrollments (user_id, course_id, enrollment_date, amount_paid)
VALUES (999, 1, datetime('mow'), 199.00); -- ID

ROLLBACK TO SAVEPOINT course_enrollment;

RELEASE SAVEPOINT course_enrollment;

COMMIT;

4.3 3.3

-— SQLite

- 1. (Read Uncommitted)
PRAGMA read_uncommitted = true;

-— 2. (Read Committed) -
-- 3. (Repeatable Read)
-- 4, (Serializable) - SQLite

BEGIN TRANSACTION;
SELECT price FROM courses WHERE course_id = 1; -- 199.00
- 2

- 2

BEGIN TRANSACTION;

UPDATE courses SET price = 299.00 WHERE course_id = 1;
COMMIT;

- 1
SELECT price FROM courses WHERE course_id = 1; -- 299.00
COMMIT;

44 34
4.4.1 1

BEGIN TRANSACTION;

- 1.

INSERT INTO users (name, email, birth_date, gender)
VALUES (' ', 'liming@email.com', '1992-06-15', 'male');
-—- 2.

INSERT INTO user_activity_log (user_id, activity_type, created_at)
VALUES (last_insert_rowid(), 'registration', datetime('now'));

-- 3.
INSERT INTO enrollments (user_id, course_id, enrollment_date, amount_paid, status)

VALUES (last_insert_rowid(), 1, datetime('now'), 0.00, 'active');

COMMIT;
4.4.2 2

BEGIN TRANSACTION;

SAVEPOINT before_purchase;

-- 3.
INSERT INTO enrollments (user_id, course_id, enrollment_date, amount_paid, status)
VALUES (1, 2, datetime('now'), 299.00, 'active');

-—- 4.

UPDATE users

SET updated_at = datetime('now')
WHERE user_id = 1;

-- 5.

-- INSERT INTO payment_log (user_id, amount, payment_method, transaction_id)
-- VALUES (1, 299.00, 'credit_card', 'TXN123456789');

10

COMMIT;

-- ROLLBACK TO SAVEPOINT before_purchase;

TCL

flowchart LR
AL] --> B[BEGIN TRANSACTION]
B --> C[]
cC -—>D{ 7}
D -->| | E[COMMIT]
D -->| | F[ROLLBACK]

E -—> G[]
F -—> H[]
G-—>1I[]
H--—>1
1.
2.
3.
4.
5 (DQL) - SELECT
SELECT
5.1 4.1 SQL -

flowchart TD

A[FROM] --> B[JOIN]
B --> C[WHERE]

C -—> D[GROUP BY]

D --> E[HAVING]

E --> F[SELECT]

F --> G[DISTINCT]

G --> H[ORDER BY 1]

H --> I[LIMIT/OFFSET 1]

style A fill:#f9f,stroke:#333,stroke-width:2px
style F fill:#bbf,stroke:#333,stroke-width:2px

INSERT INTO lessons (course_id, title, content, duration_minutes, sequence_number) VALUES
(1, 'Python ', 'Python ', 45, 1),

(1, ', 'Python ', 38, 2),

(1, t,o! ', 52, 3),

(1, v, ', 41, 4),

2, ', 'pandas ', 35, 1),

2, ! ! ', 48, 2),

2, ! ', 'matplotlib seaborn ', 55, 3),
(3, 'Figma ', 'Figma ', 30, 1),

@3, o, Y, 42, 2);

11

5.2 4.2 FROM -
5.2.1

-— 1.
SELECT * FROM users;

-- 2.

SELECT u.name, u.email, u.created_at
FROM users u

WHERE u.is_active = true;

-- 3.
SELECT course_stats.*
FROM (
SELECT
course_id,
COUNT(*) as enrollment_count,
AVG(amount_paid) as avg_paid
FROM enrollments
WHERE status = 'active'
GROUP BY course_id
) course_stats
WHERE course_stats.enrollment_count > 1;

5.3 4.3 JOIN -
5.3.1 JOIN

graph LR
A[LEFT TABLE]
B[RIGHT TABLE]

subgraph "INNER JOIN"
cl]

end

subgraph "LEFT JOIN"
D[
 1]
end

subgraph "RIGHT JOIN"
E[
 1]
end

subgraph "FULL OUTER JOIN"
F[]

end

-- 1. INNER JOIN -
SELECT

u.name as student_name,

c.title as course_title,

e.enrollment_date,

e.amount_paid
FROM users u
INNER JOIN enrollments e ON u.user_id = e.user_id
INNER JOIN courses c ON e.course_id = c.course_id
WHERE u.is_active = true;

-- 2. LEFT JOIN -

12

SELECT
u.name,
u.email,
COUNT (e.course_id) as course_count,
COALESCE(SUM(e.amount_paid), 0) as total_spent
FROM users u
LEFT JOIN enrollments e ON u.user_id = e.user_id
GROUP BY u.user_id, u.name, u.email;

-- 3.
SELECT
u.name as student_name,
c.title as course_title,
cat.name as category_name,
COUNT (up.progress_id) as lessons_completed,
COUNT(1l.lesson_id) as total_lessons,
ROUND(
COUNT (up.progress_id) * 100.0 / COUNT(1l.lesson_id),
2
) as completion_percentage
FROM users u
JOIN enrollments e ON u.user_id = e.user_id
JOIN courses c¢ ON e.course_id = c.course_id
JOIN categories cat ON c.category_id = cat.category_id
LEFT JOIN lessons 1 ON c.course_id = l.course_id
LEFT JOIN user_progress up ON u.user_id = up.user_id
AND 1.lesson_id = up.lesson_id
WHERE e.status = 'active'
GROUP BY u.user_id, c.course_id, u.name, c.title, cat.name
ORDER BY completion_percentage DESC;

5.3.2 -

SELECT DISTINCT

ul.name as current_user,

u2.name as classmate,

c.title as course_title
FROM users ul
JOIN enrollments el ON ul.user_id = el.user_id
JOIN enrollments e2 ON el.course_id = e2.course_id
JOIN users u2 ON e2.user_id = u2.user_id
JOIN courses c¢ ON el.course_id = c.course_id
WHERE ul.user_id !'= u2.user_id --

AND ul.name = ' '
ORDER BY c.title, u2.name;

54 4.4 WHERE -
5.4.1

- 1.

SELECT * FROM courses

WHERE price > 200
AND difficulty_level = 'intermediate'
AND is_published = true;

- 2.
SELECT * FROM users

13

WHERE birth_date BETWEEN '1990-01-01' AND '1999-12-31'

AND created_at >= datetime('now', '-30 days');
-- 3.
SELECT * FROM courses
WHERE title LIKE 'JPythonJ),' -- Python

OR title LIKE ' %'; o

-- 4.
SELECT * FROM courses
WHERE category_id IN (1, 2) --
AND difficulty_level NOT IN ('advanced');

5.4.2

-- 1. NULL
SELECT * FROM users
WHERE birth_date IS NOT NULL
AND (phone IS NULL OR length(phone) < 11);

- 2.
SELECT * FROM users
WHERE email REGEXP '~ [a-zA-Z0-9. J+-1+@[a-zA-Z0-9.-1+\.[a-zA-Z]1{2,}$";

-- 3.
SELECT * FROM enrollments
WHERE date(enrollment_date) = date('now') --
OR strftime(')w', enrollment_date) = '0O'; -—-

-- 4,
SELECT * FROM users
WHERE user_id IN (
SELECT DISTINCT user_id
FROM enrollments
WHERE amount_paid > 200
);

5.5 4.5 GROUP BY -
5.5.1

-—- 1.

SELECT
c.title,
COUNT(*) as enrollment_count,
AVG(e.amount_paid) as avg_payment,
MIN(e.amount_paid) as min_payment,
MAX (e.amount_paid) as max_payment,
SUM(e.amount_paid) as total_revenue

FROM courses c

JOIN enrollments e ON c.course_id = e.course_id

GROUP BY c.course_id, c.title

ORDER BY enrollment_count DESC;

- 2.

SELECT
strftime('%Y-%m', enrollment_date) as month,
COUNT(*) as enrollments,
SUM(amount_paid) as monthly_revenue,

14

COUNT(DISTINCT user_id) as unique_students
FROM enrollments
GROUP BY strftime('%Y-%m', enrollment_date)
ORDER BY month;

5.5.2 HAVING -

- > 2

SELECT
c.title,
COUNT(*) as enrollment_count,
AVG(e.amount_paid) as avg_payment

FROM courses c

JOIN enrollments e ON c.course_id = e.course_id

GROUP BY c.course_id, c.title

HAVING COUNT(*) > 1 -- enrollment_count
AND AVG(e.amount_paid) > 150

ORDER BY enrollment_count DESC;

-- HAVING
SELECT
cat.name as category,
COUNT (DISTINCT c.course_id) as course_count,
COUNT (DISTINCT e.user_id) as student_count,
SUM(e.amount_paid) as category_revenue
FROM categories cat
JOIN courses c ON cat.category_id = c.category_id
JOIN enrollments e ON c.course_id = e.course_id
GROUP BY cat.category_id, cat.name
HAVING course_count >= 1
AND category_revenue > 200
AND student_count > 1;

5.6 4.6
5.6.1 -

- 1.
SELECT
u.name,
c.title,
e.amount_paid,
ROW_NUMBER() OVER (ORDER BY e.amount_paid DESC) as payment_rank,
RANK() OVER (ORDER BY e.amount_paid DESC) as payment_rank_with_ties,
DENSE_RANK() OVER (ORDER BY e.amount_paid DESC) as dense_payment_rank
FROM users u
JOIN enrollments e ON u.user_id e.user_id
JOIN courses c ON e.course_id = c.course_id;

-- 2.
SELECT
u.name,
c.title,
cat.name as category,
e.amount_paid,
AVG(e.amount_paid) OVER (PARTITION BY cat.category_id) as category_avg_payment,
e.amount_paid - AVG(e.amount_paid) OVER (PARTITION BY cat.category_id) as payment_diff_from_avg
FROM users u
JOIN enrollments e ON u.user_id = e.user_id

15

JOIN courses c¢ ON e.course_id = c.course_id
JOIN categories cat ON c.category_id = cat.category_id;

-- 3.
SELECT
enrollment_date,
amount_paid,
SUM(amount_paid) OVER (ORDER BY enrollment_date) as running_total,
LAG(amount_paid, 1) OVER (ORDER BY enrollment_date) as previous_payment,
LEAD (amount_paid, 1) OVER (ORDER BY enrollment_date) as next_payment
FROM enrollments
ORDER BY enrollment_date;

5.6.2 (CTE)

-- 1. CTE
WITH course_stats AS (
SELECT
c.course_id,
c.title,
COUNT(e.enrollment_id) as enrollment_count,
AVG(e.amount_paid) as avg_payment
FROM courses c
LEFT JOIN enrollments e ON c.course_id = e.course_id
GROUP BY c.course_id, c.title
),
popular_courses AS (
SELECT * FROM course_stats
WHERE enrollment_count >= 2
)
SELECT
title,
enrollment_count,
ROUND (avg_payment, 2) as avg_payment
FROM popular_courses
ORDER BY enrollment_count DESC;

-- 2. CTE
WITH RECURSIVE course_recommendations AS (
SELECT
u.user_id,
.name,
.course_id,
.title,
as level
FROM users u
JOIN enrollments e ON u.user_id = e.user_id
JOIN courses c ON e.course_id = c.course_id
WHERE u.name = ' '

= o0 o0 e

UNION ALL

SELECT
cr.user_id,
cr.name,
c2.course_id,
c2.title,

16

cr.level + 1
FROM course_recommendations cr
JOIN courses cl ON cr.course_id = cl.course_id
JOIN courses c2 ON cl.category_id = c2.category_id
WHERE cr.level < 2
AND c2.course_id NOT IN (
SELECT course_id FROM course_recommendations
)
)
SELECT DISTINCT name, title, level
FROM course_recommendations
ORDER BY level, title;

5.6.3

- 1.
SELECT
u.name,
u.email,
(SELECT COUNT(*) FROM enrollments e WHERE e.user_id = u.user_id) as course_count,
(SELECT MAX(amount_paid) FROM enrollments e WHERE e.user_id = u.user_id) as max_payment
FROM users u;

-— 2.
SELECT u.name, u.email
FROM users u
WHERE EXISTS (
SELECT 1 FROM enrollments e
WHERE e.user_id = u.user_id
AND e.amount_paid > 200

)3

-- 3.

SELECT
c.title,
c.price,
(

SELECT COUNT (%)

FROM enrollments e

WHERE e.course_id = c.course_id
) as enrollment_count,

CASE
WHEN (SELECT COUNT(*) FROM enrollments e WHERE e.course_id = c.course_id) > 2
THEN ' !
WHEN (SELECT COUNT(*) FROM enrollments e WHERE e.course_id = c.course_id) > 0
THEN '
ELSE ' !

END as popularity
FROM courses c
WHERE c.is_published = true;

5.7 4.7

-- 1. UNION -

SELECT name as person_name, 'Student' as role FROM users
WHERE user_id IN (SELECT DISTINCT user_id FROM enrollments)
UNION

SELECT title as person_name, 'Course' as role FROM courses
WHERE is_published = true;

17

-- 2. INTERSECT -

SELECT user_id FROM enrollments WHERE course_id = 1
INTERSECT

SELECT user_id FROM enrollments WHERE course_id = 2;
-- 3. EXCEPT -

SELECT user_id FROM users WHERE is_active = true
EXCEPT

SELECT DISTINCT user_id FROM enrollments;

5.8 4.8 ORDER BY LIMIT -

-— 1.
SELECT
u.name,
c.title,
e.amount_paid,
e.enrollment_date
FROM users u
JOIN enrollments e ON u.user_id = e.user_id
JOIN courses c¢ ON e.course_id = c.course_id
ORDER BY
e.amount_paid DESC, --
e.enrollment_date ASC, -—-
u.name; -

-- 2.
SELECT
u.name,
u.birth_date,
CASE
WHEN date('now') - birth_date > 365.25 * 30 THEN '30+'
WHEN date('now') - birth_date > 365.25 * 25 THEN '25-30'
ELSE '25 '
END as age_group
FROM users u
ORDER BY
CASE
WHEN date('now') - birth_date > 365.25
WHEN date('now') - birth_date > 365.25
ELSE 3
END,
u.name;

*

30 THEN
25 THEN 2

*
[

-- 3.
SELECT
u.name,
c.title,
e.amount_paid
FROM users u
JOIN enrollments e ON u.user_id = e.user_id
JOIN courses ¢ ON e.course_id = c.course_id
ORDER BY e.enrollment_date DESC
LIMIT 10 OFFSET 0; -- 10

WITH numbered_results AS (
SELECT

18

u.name,
c.title,
e.amount_paid,
ROW_NUMBER() OVER (ORDER BY e.enrollment_date DESC) as row_num
FROM users u
JOIN enrollments e ON u.user_id e.user_id
JOIN courses c¢ ON e.course_id = c.course_id

)

SELECT name, title, amount_paid
FROM numbered_results

WHERE row_num BETWEEN 11 AND 20; -—-

5.9
5.9.1

EXPLAIN QUERY PLAN
SELECT
u.name,
COUNT (e.course_id) as course_count
FROM users u
LEFT JOIN enrollments e ON u.user_id = e.user_id
WHERE u.is_active = true
GROUP BY u.user_id, u.name;

5.9.2

flowchart TD
AL 1 -—> B[1]

A -->cC[]
A -—>D[1]
B-—>E[1]
B-—>F[1]
B -—> G[]

C --> H[SELECT *]
C-—>1I[]
Cc --> J[JOIN 1]

D --> K[LIMIT]
LL]
D -—> M[1]

(w]
|
|
\4

SELECT

1. FROM—WHERE—GROUP BY-HAVING—SELECT—ORDER BY
WHERE JOIN
N+1 JOIN
LIMIT
INNER JOIN LEFT JOIN

O CU WD

SQL SQL
SQL

19

SQL

SQL

20

	SQL完整使用指南：从数据定义到复杂查询
	前言
	示例数据库设计

	一、数据定义语言 (DDL) - 构建数据世界的基石
	1.1 CREATE - 创造数据结构
	创建数据库
	创建表结构
	创建索引 - 性能优化的秘密武器
	创建视图 - 数据的逻辑窗口

	1.2 ALTER - 修改现有结构
	1.3 DROP - 删除结构
	1.4 TRUNCATE - 清空表数据

	二、数据操作语言 (DML) - 数据的生命周期管理
	2.1 INSERT - 数据的诞生
	基础插入操作
	高级插入技巧

	2.2 UPDATE - 数据的成长
	基础更新操作
	高级更新技巧

	2.3 DELETE - 数据的清理
	基础删除操作
	安全删除策略

	三、事务控制语言 (TCL) - 数据一致性的守护者
	3.1 ACID特性深度解析
	3.2 基础事务控制
	事务的生命周期
	保存点（Savepoint）- 事务内的检查点

	3.3 隔离级别详解
	并发问题演示

	3.4 实际业务场景中的事务应用
	场景1：用户注册完整流程
	场景2：课程购买事务

	四、数据查询语言 (DQL) - SELECT语句完全指南
	4.1 SQL逻辑处理顺序 - 引擎的视角
	4.2 FROM子句 - 数据源的确立
	基础表查询

	4.3 JOIN连接 - 数据关系的桥梁
	JOIN类型详解
	自连接 - 同表不同角色

	4.4 WHERE子句 - 数据的精确过滤
	基础过滤条件
	高级过滤技巧

	4.5 GROUP BY和聚合函数 - 数据的汇总艺术
	基础分组和聚合
	HAVING子句 - 分组后的过滤

	4.6 高级查询技术
	窗口函数 - 数据分析的利器
	通用表表达式 (CTE)
	子查询的艺术

	4.7 集合操作
	4.8 ORDER BY和LIMIT - 结果的排序和限制
	📊 查询性能优化
	执行计划分析
	优化建议

	总结

